УДК 536.42+536.75+530.18+517.9

А.И. Аршинов, Р.Р. Мударисов, Б.Н. Пойзнер

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ В ЛАЗЕРНОЙ СИСТЕМЕ: ПРЕДСКАЗЫВАЮТСЯ НОВЫЕ ЭФФЕКТЫ ОПТИЧЕСКОЙ СИНЕРГЕТИКИ

По итогам компьютерного моделирования процессов оптического морфогенеза в интерферометре с керровской нелинейностью предсказывается циклическая самотрансформация. Обосновывается понятие «карусельной» неустойчивости как причины циклических феноменов.

Выясняется влияние неидентичности стартовых скоростей процессов $V_j = dU_j/dt$ при t = 0 в сложной многокомпонентной системе на динамику системы. Предложена нормированная мера θV неидентичности V_j . В зависимости от степени θV реализуется либо непериодический процесс, либо периодический, либо «разноуровневый» стационарный, т.е. с разными значениями U_j .

Возникновение синергетики тесным образом связано с изучением процессов в лазере. Один из основателей синергетики Г. Хакен рассматривает лазер как прототип системы, которая в процессе самоорганизации создает сложную пространственно-временную структуру. Переход от некогерентного лазерного излучения к когерентному представляет собой один из примеров самоорганизации. На современном этапе развития синергетики лазер как объект ее исследования уступает место лазеру как фактору, порождающему новые классы процессов самоорганизации. К числу подобных процессов относится формообразование в кольцевом оптическом интерферометре, содержащем одну или несколько пространственно разделенных нелинейных сред [1]. Данная работа служит продолжением компьютерных экспериментов [2–4]. Авторов работы интересовали возможность и особенности проявления стационарных режимов генерации оптических структур в этом интерферометре.

Интерферометр, содержащий среду с керровской нелинейностью и обеспечивающий двумерные крупномасштабные преобразования поля в контуре обратной связи [1, рис. 6.19], удобен не только для натурного изучения явления преобразования входного гауссова пучка в сложную динамическую пространственно-временную структуру, но и для моделирования ее эволюции, т. е. распределения фазового набега U(x, y, t) в поперечном сечении светового пучка. В качестве модели используется нелинейное параболическое уравнение со смещенным пространственным аргументом из [1]:

$$\partial U(x, y, t)/\partial t + U(x, y, t)/\tau = d\Delta_{\perp} U(x, y, t) + K[1 + \gamma \cos(U(x', y', t) + f_0)]/\tau.$$
(1)

Координаты x', y' связаны с x, y соотношениями:

$$x' = \alpha(x \cos\Delta + y \sin\Delta);$$

$$y' = \alpha(y \cos\Delta - x \sin\Delta),$$

где α – изменение масштаба лазерного пучка; Δ – поворот поля в контуре обратной связи.

В случае, когда начальное распределение фазы $U(x, y, 0) = \sin(4\pi x) \times \sin(4\pi y) + 1(\text{рад})$, время релаксации нелинейной части показателя преломления $\tau = 0,001$ с; коэффициент диффузии $d = 10^{-3} \text{ мм}^2/\text{с}$; параметр нелинейности K = 4,084; видность интерференционной картины $\gamma = 1$; постоянный фазовый набег $f_0 = 0$; $\alpha = 0,8$; $\Delta = 50^\circ$, возможна периодическая трансформация оптических структур, названная нами циклической самореорганизацией. В целом динамика формообразования ледующая.

В результате переходного процесса (длительность порядка τ) формируется двухвостая спираль. Затем она самопроизвольно видоизменяется, не переходя в стохастизированное состояние.

К моменту времени $t_A = 9,5\tau$ (при моделировании оптического морфогенеза промежуток 10 τ оценивается как время установления стационарного состояния [2]) формируется структура *A* (рис. 1).

Далее она сменяется непрерывной последовательностью самореорганизующихся оптических структур. В момент времени $t_{A1} = 14\tau$ образуется структура A1, не отличимая по строению от структуры A. Затем непрерывная последовательность распределений фазы U(x, y, t) повторяется циклически с периодом $T = t_{A1} - t_A \cong 4,5\tau$.

Циклическая самореорганизация сохраняется при варьировании коэффициента диффузии *d* в интервале $(2...3)\cdot 10^{-3}$ мм²/с. На некоторых этапах циклической самореорганизации наблюдается неравномерный по скорости поворот четырехлепестковой структуры как целого: на угол 10–20° за время порядка τ .

Увеличение *d* до значений порядка 10^{-2} мм²/с приводит вместо циклической самореорганизации к спонтанному переходу от двухвостовой спирали к двухлепестковой структуре (при $t \cong 2\tau$), которая путем деления лепестков преобразуется (при $t \cong 4\tau$) в четырехлепестковую структуру, совершающую неполный поворот как целое против часовой стрелки с полупериодом $T_4/2 = (14 \pm 2)\tau$. К моменту $t \cong 24\tau$ она самопроизвольно трансформируется в трехлепестковую структуру, совершающую стационарное вращение по часовой стрелке с периодом $T_3 = (12 \pm 2)\tau$ в течение времени наблюдения $t \cong 100\tau$. Оценка скоростей их вращения и определение их направления по формулам из [5, 6] при единичном радиусе кольца для оптического ревербератора дает соответственно $T_4 \cong 15\tau$, $T_3 \cong 10\tau$ и противоположность направлений их вращения.

Моделирование наводит на предположение о том, что в нелинейном интерферометре с двухмерной обратной связью возможно циклическое развитие пространственно-временной неустойчивости, которая при одних условиях приводит к вращению структур [1, 3], но без их циклической самореорганизации (ротация имеет место и в случае одномерного пучка в форме узкого кольца [1, 5, 6]), при других – к циклической самореорганизации, но без вращения структур, а при третьих – к ротационно-циклической трансформации их. Поэтому данную неустойчивость стоило бы назвать ротационно-циклической, или «карусельной».

Важным аспектом исследования динамики оптических структур является изучение процессов в активных пространственно разделенных оптических системах. В данной статье в противоположность варианту оптической схемы на рис. 6.6 в [1] рассматривается параллельное, а не последовательное расположение нелинейных сред, как это показано на рис. 2 для

А.И. Аршинов, Р.Р. Мударисов, Б.Н. Пойзнер

случая трех сред. Оптические поля E_1 , E_2 , E_3 в них взаимодействуют благодаря частичной и (или) полной передаче излучения из одной подсистемы в другую с помощью восьми зеркал M, показанных на рис. 2 короткими жирными линиями. Ради простоты и уменьшения числа варьируемых параметров нами выбран случай пренебрежимо малого мелкомасштабного взаимодействия оптических полей в нелинейной среде, когда коэффициенты диффузии $d_j = 0$. При сделанных предположениях модель многокомпонентной системы можно записать в виде

$$dU_{j}/dt = K_{j}[1 + \gamma_{j}\cos(U_{l} + f_{0j})]/\tau_{j} - U_{j}/\tau_{j},$$
(2)

где j = 1, 2, 3, ..., N; l = 2, 3, N, ..., 1. Согласно [1] U_j – фазовый набег волны в *j*-й нелинейной среде; $n_j = n_{0j} + n_{2j} |E_j(\mathbf{r}, t)|^2$, $K_j = n_{2j} I_{\text{вкj}} k L_j (1 - R_j)$; k – волновое число; L_j – длина среды; $I_{\text{вкj}}$ – интенсивность излучения на входе в *j*-ю среду; R_j – коэффициент отражения зеркал интерферометра для излучения в *j*-м канале; $f_{0j} = k L_j n_{0j}$.

Возможны различные варианты количественных характеристик, которые пригодны описывать влияние степени отличия параметров подсистем и начальных условий U_{0j} на характер динамики процессов. По-видимому, наиболее просто учесть указанные величины в совокупности, воспользовавшись стартовыми скоростями процессов в подсистеме $V_j = dU_j/dt|_{t=0}$, равными значениям правых частей уравнений (2) при t = 0. Описывать неодинаковость стартовых скоростей V_j можно, используя соотношения между ними. Одним из вариантов характеристики различия стартовых скоростей V_j может служить нормированная мера их неидентичности, которой и будем оперировать в дальнейшем:

$$\Theta V = N \sqrt{\sum_{j=1}^{N-1} \left(\left| V_{i} \right| - \left| V_{i+1} \right| \right)^{2} + \left(\left| V_{N} \right| - \left| V_{1} \right| \right)^{2} / \sum_{j=1}^{N} \left(\left| V_{j} \right| \right),$$
(3)

где N – число подсистем. Очевидно, что в случае идентичности параметров подсистем и начальных условий ($U_{0i} = U_0$) величина $\Theta V = 0$.

С целью выяснить влияние неидентичности стартовых скоростей процессов $V_j = dU_j/dt|_{t=0}$ на динамику многокомпонентной системы уравнения (2) решались численным методом Рунге–Кутты–Мерсона [7]. При интегрировании (2) начальными условиями служили задаваемые величины U_{0j} . Если U_{0j} заданы и все параметры в (2) известны, то тем самым заданы и стартовые скорости V_j , вычисляемые как правые части уравнений (2) при t = 0. В свою очередь знание величины V_j позволяет рассчитать по формуле (3) значение меры неидентичности ΘV .

Моделирование показало, что при идентичности стартовых скоростей процессов в подсистемах (когда $\Theta V \equiv 0$) в трехкомпонентной системе возникает только стационарное движение. В этом тестовом случае значения фазовых набегов U_i , естественно, одинаковы.

Если же параметры подсистем идентичны, а начальные условия U_{0j} различны, либо наоборот, то (в зависимости от величины ΘV) возможны еще шесть типов эволюции многокомпонентной системы.

При $0 < \Theta V < 0,001$ сначала реализуется начальный процесс установления U_j , затем – переходный процесс со стационарным (и одинаковым) значением фазовых набегов $U_j = U_{st}$ (ППСФ). В качестве критерия стационарности ППСФ использовалось следующее условие:

$$|dU_i/dt|/U_i < 0.01.$$

Как показало моделирование, длительность t_s ППСФ по критерию (4) зависит от степени неидентичности стартовых скоростей ΘV по закону:

$$t_s = -A \ln \Theta V - B, \tag{5}$$

который получен аппроксимацией зависимости, показанной на рис. 3 кривой 3. Здесь величина t_s нормирована на единицу времени; для удобства построения на оси абсцисс приведены значения величины $\theta V^{1/5}$; константы в (5) A = 2,09, B = 14,77. Для этого случая N = 3, $\tau_j = 1c$, $\gamma_j = 0,8$, $K_j = 5$, $f_{0j} = U_{02} = U_{03} = 0$; величина θV изменялась в зависимости от значения U_{01} . Соотношение (5) сохраняет силу при варьировании числа нелинейных сред, изменяются лишь входящие в него константы. Для сравнения на рис. 3 приведены кривые 1 (случай двух и четырех сред), 2 (случай пяти сред). Константы A и B в (5) равны соответственно 0,50 и 4,45; 0,51 и 4,11; 0,72 и 5,63.

Моделирование процессов в лазерной системе

(4)

После завершения ППСФ возможны три альтернативных варианта динамики фазового набега: непериодический, периодический, стационарный «разноуровневый» процессы. При этом значения U_i различны, что отличает «разноуровневый» стационарный процесс от ППСФ.

Порога неидентичности, т.е. минимального значения ΘV , начиная с которого стационарность процесса сохраняется как угодно долго, не выявлено. Этот факт согласуется с установленной зависимостью (5).

В интервале значений ΘV [0,001, 1] после начального процесса установления U_i переходный процесс со стационарным (и одинаковым) значением $U_i = U_{st}$ (с ограниченной длительностью t_{s}) не зафиксирован. В зависимости от степени неидентичности стартовых скоростей процессов в подсистемах реализуется либо непериодический процесс, либо периодический, либо «разноуровневый» стационарный, т.е. с разными значениями U_i.

Значение $\Theta V = 1$ служит своего рода границей, так как при $\Theta V > 1$ во всех проведенных вычислительных экспериментах непериодические процессы не зафиксированы.

Итак, и в однокомпонентной, и в многокомпонентной нелинейно-оптических системах возможен тип динамики, который предлагается назвать «режимом ограниченной стационарности». Прилагательное «ограниченная» подразумевает, во-первых, что этот режим (в обеих системах) существует лишь в определенной области параметров и начальных условий; вовторых, что длительность его (в многокомпонентной системе) не превышает некоторого значения. Термин «стационарность» указывает на четко выраженную периодичность формообразования (в однокомпонентной системе) либо даже на постоянство фазового набега в ходе ΠΠCΦ.

1. Ахманов С.А., Воронцов М.А., Иванов В.Ю. Новые принципы оптической обработки информации/ Под ред. С.А. Ахманова и М.А. Воронцова. М.: Наука, 1990. С. 263-325.

2. Воронцов М.А., Железных Н.И. // Математическое моделирование. 1990. Т. 2. № 2. С. 31–38.

5. Ахманов С.А., Воронцов М.А., Иванов В.Ю. // Письмав ЖЭТФ. 1988. Т. 47. Вып. 12. С. 611–614. 6. Воронцов М.А., Иванов В.Ю., Ларичев А.В. // Изв. АН СССР. Физика. 1991. Т. 55. №2. С. 116–121. 7. Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «РАСКО», 1991. 272 c.

Томский государственный университет им. В.В. Куйбышева

Поступила в редакцию 26 июля 1995 г.

A.I. Arshinov, R.R. Mudarisov, B.N. Poizner. Computer Imitation of Processes in Laser System: Some New Effects of Optical Synergetics Are Predicted.

In authors opinion, phenomena of cyclic transformation of structures can become a new class of synergetical processes. The cyclic selftransformation is predicted from computer imitation of the optical morphogenesis processes in the interferometer with Kerr's non-linearity. The concept of «merry-go-round» non-stability as a cause of the cyclic phenomena is proposed.

The model of phase modulation dynamics in the ring interferometer containing non-linear refracting media with the interaction of optical fields was considered in order to clear up the action of non-identity of start rates of the processes $V_i = dU/dt$ at t = 0 on the system dynamics. The normalised measure ΘV of a non-identity of the magnitudes of V_i is proposed. The non-periodical, periodical, or stationary processes (but with different values of U_i) take place depending on ΘV .

А.И. Аршинов, Р.Р. Мударисов, Б.Н. Пойзнер

^{3.} Аршинов А.И., Мударисов Р.Р., Пойзнер Б.Н. //Изв. вузов. Физика. 1994. № 6. С. 102–104. 4. Аршинов А.И., Мударисов Р.Р., Пойзнер Б.Н., Старова Н.А. // Изв. вузов. Физика. 1994. № 2. C. 20–22.