С.М. Сакерин, Д.М. Кабанов, С.А. Турчинович

КОМПЛЕКС ПРИБОРОВ ДЛЯ РАДИАЦИОННЫХ ИССЛЕДОВАНИЙ

Приведены описание и технические характеристики измерительного комплекса, состоящего из двух солнечных фотометров, спектрального пиранометра на область спектра 0,3–1 мкм, дистанционного пиранометрарефлектометра, фотоэлектронного измерителя продолжительности солнечного сияния и фотометра яркости неба. Отмечается, что разработанный аппаратурно-программный комплекс в составе шести измерителей, совмещенных с персональными компьютерами, обеспечивает получение данных в реальном масштабе времени по всем ключевым характеристикам коротковолновой радиации.

Проведение комплексных радиационных исследований связано с продолжительными, во многих случаях непрерывными измерениями относительно большого числа разнородных параметров атмосферы и подстилающей поверхности. Среди основных характеристик следует назвать интегральные и спектральные компоненты коротковолновой радиации (суммарная, прямая, рассеянная, отраженная), альбедо подстилающей поверхности, спектральную прозрачность атмосферы, общее содержание аэрозольно-газовых компонент и др. [1–3].

Необходимость непрерывных наблюдений обусловлена тем, что радиационные параметры отличаются очень высокой изменчивостью по амплитуде и частотному диапазону колебаний. Причем максимальные вариации обусловлены движением облачности, а наличие последней типично для большинства районов умеренных широт. Например, август в г. Томске характеризуется только двумя днями ясного неба ($N_{oбл} \le 2$ бал.) и двумя днями сплошной облачности [4], остальное время – переменная облачность с соответствующей изменчивостью компонент приходящей радиации. На «облачную» изменчивость, естественно, накладываются более медленные колебания общего содержания аэрозоля и водяного пара, создавая сложную структуру вариаций радиационных потоков в диапазоне от секунд до суток и выше. Под разнородностью параметров здесь понимается не только различие объектов исследований (аэрозоль, облака, газы, радиация), но и различие аппаратуры, методов исследований, режима наблюдений. Приведем несколько соображений, которые необходимо учитывать при создании современных радиационных комплексов.

1. Традиционные исследования компонент интегральных потоков не дают полного представления о сложных процессах энергетических обменов в системе «атмосфера – океан – суша». Селективность взаимодействия газов, растительного покрова, аэрозоля определяет соответствующую трансформацию компонент радиационного баланса и «внутреннее» перераспределение энергии, которое не всегда проявляется в интегральных параметрах.

2. Корректные исследования отраженной радиации, альбедо и коротковолнового (КВ) баланса могут быть проведены, если приборы расположены не над тестовым участком актинометрической площадки, а «подвешены» над типичной для региона подстилающей поверхностью.

 Удовлетворение требованиям современных измерительных технологий с усвоением большого числа параметров делает необходимым оптимизацию общей методики комплексного эксперимента, адаптацию отдельных приборов к персональным компьютерам и полевым условиям применения.

Для проведения исследований особенностей радиационного режима Западно-Сибирского региона в ИОА СО РАН был разработан такой комплекс в составе 6 измерителей, информация от которых подается на два рабочих места операторов-исследователей.

В состав радиационного комплекса (рис. 1, 2) входят следующие измерители: солнечные фотометры АМСФ-3 и -4, дистанционный подвесной пиранометр-рефлектометр ДПР, спектропиранометр СПУР, фотоэлектронный гелиограф ФЭГ и фотометр лучистости неба ФЛН. Общей конструктивной особенностью всех приборов является их исполнение в двух частях –

Комплекс приборов для радиационных исследований

дистанционно устанавливаемые оптико-электронные измерители и совмещенные в один блок пульты управления с общим источником электропитания. Дистанционность установки отдельных приборов – в пределах 20÷40 м от пульта управления. В выносных блоках осуществляется усиление и преобразование сигналов фотоприемных устройств, достаточное для помехозащитной передачи информации по длинной линии связи. Общее число первичных измеряемых параметров составляет 68, а информационных каналов – 24 (без учета линий связи для следящих систем, термостатирования, электропитания и т.д.).

Рис. 1. Условная схема исследуемых параметров и измерителей: W^{Γ} – общее содержание газовых компонент (H₂O, CO₂, CH₄, N₂O); τ^{a} – АОТ атмосферы; S_λ, S_A – спектральная и интегральная прямая радиация; T_{λ} – спектральная прозрачность атмосферы и облачности; γ –ореольная индикатриса рассеяния; Q, R, A – суммарная, отраженная радиация и альбедо; Q_{λ}, D_{λ} – спектральная суммарная и рассеянная радиация; S_{s} –продолжительность солнечного сияния; $B_{\lambda}(\phi)$ – энергетическая яркость неба (облаков) при углах визирования ϕ

Рис. 2. Внешний вид радиационного комплекса

С.М. Сакерин, Д.М. Кабанов, С.А. Турчинович

Разделение комплексного эксперимента на две группы сделано по принципу: измерители с непрерывной регистрацией (ДПР, СПУР, ФЭГ, ФЛН) и приборы с дискретным (отдельными циклами) режимом наблюдений (АМСФ-3 и -4).

В группе непрерывных измерений по 12 информационным каналам осуществляется передача информации о 20 первичных параметрах. Еще три параметра (рассеянная радиация, альбедо, КВ-баланс) дополнительно восстанавливаются с учетом данных актинометрического канала АМСФ-3. Количество измеряемых данных и информационных каналов приведено на рис. 1 в виде дроби – $N_{парам}/N_{канал}$.

Солнечные фотометры АМСФ-3, 4 по ряду характеристик дублируют друг друга, повышая надежность исследований, и в то же время специализированы на две разные задачи. АМСФ-3 ($\lambda = 0,3 \div 4$ мкм) ориентирован на измерение спектральных аэрозольных оптических толщ (АОТ) атмосферы, общее содержание водяного пара и газовых компонент (ОСГ), спектральной и интегральной прямой радиации. АМСФ-4 предназначен для измерения спектральных оптических толщ полупрозрачной облачности, спектральных ореольных индикатрис рассеяния атмосферы и облаков, спектральной прозрачности в более широком диапазоне – от 0,35 до 12 мкм. Описание и принцип действия солнечных фотометров подробно рассмотрены в [5, 6]. Ограничимся здесь представлением только технических характеристик фотометров (табл. 1). Основной режим работы солнечных фотометров – непрерывные циклы продолжительностью 15–30 мин через каждый 1 \div 2-часовой промежуток времени, при высотах Солнца более 15°. Приборы с непрерывной в течение дня регистрацией данных рассмотрим подробне.

Таблица 1

Характеристика	АМСФ-3		АМСФ-4	
	КВ-канал	ИК-канал	КВ-канал	ИК-канал
Угол поля зрения, град.	0,75	1	0,75	1,9
Количество спектральных каналов	12	6	8	8
Максимумы (и полуширины) пропускания све-	0,37 (0,022)	2,182 (0,029)	0,368 (0,019)	2,06 (0,04)
тофильтров, мкм	0,409 (0,03)	2,32 (0,04)	0,438 (0,008)	2,19 (0,03)
	0,425 (0,013)	2,06 (0,04)	0,485 (0,008)	2,32 (0,04)
	0,439 (0,006)	3,9 (0,04)	0,552 (0,008)	3,8 (0,11)
	0,485 (0,007)	4,0 (0,04)	0,633 (0,009)	3,9 (0,04)
	0,514 (0,022)		0,869 (0,015)	4,75 (0,13)
	0,553 (0,008)	АП-1:	0,934 (0,010)	10,55 (0,24)
	0,638 (0,005)	0,3-3,0 *	1,06 (0,020)	12,1 (0,35)
	0,673 (0,010)			
	0,870 (0,011)			
	0,940 (0,010)			
	1,061 (0,019)			
Частота модуляции ИК-канала, Гц	-	180	-	280
Погрешность фотометрирования не более, %	0,3	0,7	0,3	0,7
Диапазон углов ореола, град.	-	_	0,75 - 6	
Угловое разрешение ореола, град.	-	_	0,25	
Температура термостата, °С	$35 \pm 0,5$ $35 \pm 0,5$		0,5	
Уровень выходного сигнала, В	1-10			
Время единичной серии измерений (10-20				
оборотов барабана фильтров), мин	1–2			
Погрешность слежения за Солнцем, град.	0,2			

Основные характеристики фотометров

* Указаны спектральные характеристики для актинометрического канала фотометра АП-1 [7].

Спектропиранометр СПУР предназначен для автоматизированных многоволновых измерений суммарной и рассеянной радиации в диапазоне спектра 0,36–1,06 мкм. В отличие от стандартных интегральных пиранометров [2, 8] основными элементами спектральных приборов [9, 10] являются: диффузно-рассеивающая, или интегрирующая, насадка, которая обеспечивает «косинусную» зависимость приема излучения в пределах полусферы, блок спектральной селекции (монохроматор, светофильтры и др.) и приемник фотоэлектронного типа.

Внешний вид и блок-схема выносного блока спектропиранометра СПУР приведены на рис. 3. При разработке прибора были использованы и улучшены некоторые технические решения солнечных фотометров АМСФ.

Комплекс приборов для радиационных исследований

Рис. 3. Блок-схема спектропиранометра: 1 – рассеиватель; 2 – линза; 3 – ФПУ с согласующим усилителем; 4 – барабан с фильтрами; 5, 10 – электроприводы; 6 – схема управления вращением барабана; 7 – оптронная пара; 8 – затеняющий экран; 9 – датчик Солнца; 11 – формирователь сигнала нахождения Солнца; 12 – схема управления вращением теневого экрана; 13 – схема термостата; U_{λ} – сигналы потоков радиации Q_{λ} и D_{λ} ; служебные сигналы U_3 – «замер», U_0 – оборот барабана («цикл»), U_z – остановка теневого экрана «на Солнце», U_{τ} – индикация работы термостата

Спектропиранометр работает следующим образом. Интегрирующая насадка из фторопласта *1* обеспечивает прием суммарной радиации от всего небесного свода, а кварцевая линза *2* фокусирует перерассеянное излучение на фотоприемное устройство ФПУ-21 (разработка СКБ ФТИ им. А.Ф. Иоффе [11]). ФПУ-21 (в гибридно-интегральном исполнении) состоит из кремниевого фотодиода и усилителя с переключаемым коэффициентом усиления. Дополнительный согласующий усилитель служит для усиления сигналов ФПУ до уровня, достаточного для их передачи по длинной линии, и аналого-цифрового преобразования. Спектральная селекция принимаемой радиации осуществляется интерференционными фильтрами *4*, установленными во вращающемся барабане. Автоматическое управление сменой фильтров производится электронной схемой *6* с синхронизацией от оптронных пар 7. В отличие от аналогичного блока в фотометрах АМСФ барабан фильтров вращается с переменной скоростью – замедляется при пересечении фильтров оптической оси и ускоряется в «неинформативных» промежутках между фильтрами.

Измерение рассеянной компоненты радиации – D_{λ} осуществляется с помощью теневого экрана 8, который при ориентации на Солнце перекрывает рассеиватель 1 от прямого излучения. Величина поправки, вносимой экраном при перекрытии части небосвода, не превышает 2%. В режиме поиска Солнца теневой экран с датчиком Солнца 9 вращается вокруг вертикальной оси электроприводом 10. При попадании Солнца в поле зрения датчика ($\omega = 2^{\circ} \times 90^{\circ}$) вырабатывается сигнал «остановки» на схему управления 12. Вращение теневого экрана возобновляется после проведения двух циклов измерений (двух оборотов барабана фильтров). Порог срабатывания «датчика Солнца» устанавливается по уровню минимальной прямой радиации в условиях открытого от облачности Солнца, т.е. остановка теневого экрана и измерение D_{λ} производятся только при открытом диске Солнца.

Для предотвращения запотевания оптических элементов и нормальной работы электронных плат внутренняя полость спектропиранометра термостатирована.

Учитывая, что оптико-электронный тракт измеряемых сигналов (ФПУ, усилитель, АЦП) идентичен фотометру АМСФ, отдельных исследований погрешности фотометрирования не проводилось, и она оценивается (для относительных измерений) на уровне 0,3%.

Основные технические характеристики спектропиранометра СПУР представлены в табл. 2. Здесь же для сравнения приведены характеристики лучшего современного аналога – многофильтрового радиометра MFRSR-6 [10]. Разработка MFRSR-6 осуществлялась в Центре атмосферных исследований Нью-Йоркского университета для выполнения ряда радиационных программ.

Таблица 2

Гехнические	характе	ристики	спект	ропи	раномет	ров
-------------	---------	---------	-------	------	---------	-----

Характеристика	СПУР	MFRSR-6
Характеристика	0	WII KSK-0
Количество спектральных каналов	8	6
Максимумы (и полуширины) пропускания светофильтров, нм	370 (24)	415 (10)
	440 (7)	500 (10)
	484 (7)	610 (10)
	550 (4)	665 (10)
	692 (14)	862 (10)
	869 (14)	940 (10)
	940 (10)	
	1065 (11)	
Время единичного цикла измерений, с	5 ÷ 10	15
Погрешность фотометрирования, %	1	1
Отклонение от косинусной зависимости в диапазоне углов 0-80°		
не более, %	18*	5
Габариты выносного блока, мм	$244 \times 326 \times 290$	$332 \times 364 \times 274$

* Результаты пробных экспериментов (не окончательные данные).

Заметим, что оба спектропиранометра (СПУР и MFRSR-6) имеют канал влагосодержания 0,94 мкм и допускают установку любых других светофильтров в пределах полосы чувствительности своих ФПУ.

Дистанционный подвесной пиранометр-рефлектометр разрабатывался для исследования короткопериодных вариаций основных, стандартных компонент солнечной радиации – суммарной, рассеянной, отраженной, альбедо подстилающей поверхности и коротковолнового баланса (рис. 4).

Рис. 4. Общая схема ДПР: 1 – пиранометр; 2 – схемы обогрева; 3 – усилители сигналов пиранометрических датчиков; 4 – датчик освещенности «день–ночь»; 5 – электромеханический блок закрытия (открытия) кожуха; 6 – двухкоординатная подвеска; 7 – балансир; 8 – защитный кожух; 9 – рефлектометр

В качестве приемников радиации в ДПР использованы два термоэлектрических пиранометра ПП-1 [8], ориентированных в верхнюю и нижнюю полусферы. В состав выносной части ДПР входят: усилители сигналов пиранометров, схемы обогрева защитных колб пиранометров, электромеханический блок полуавтоматического закрытия (открытия) кожуха, датчик освещенности «день-ночь», двухкоординатная подвеска с балансиром (противовесом) для самогоризонтирования ДПР. Большая дистанционность (не менее 40 м) позволяет устанавливать ДПР на мачте или подвешивать над обследуемым участком на высоте 10÷20 м. Разработка пиранометра-рефлектометра в варианте дистанционного прибора была обусловлена необходимостью проведения измерений над типичной для Западно-Сибирского региона подстилающей поверхностью – лесным покровом.

Автоматизация ДПР предусматривает утренний перевод приборов радиационного блока в рабочий режим и включение компьютера с «дежурной» программой измерений.

Основные технические характеристики ДПР			
Диапазон потоков КВ-радиации, кВт/м ²		0,01-	1,5
Общий коэффициент преобразования пиранометра, (В · м)/кВт		(6,5
Общий коэффициент преобразования рефлектометра, (В · м ²)/кВт			27
Дистанционность выносного блока, м	,		40
Приведенная допустимая основная погрешность датчиков не более, %			6
Габаритные размеры выносного блока, мм	70×1	180×3	320

Фотоэлектронный гелиограф – наиболее простой прибор радиационного комплекса, предназначен для измерения продолжительности солнечного сияния (ПСС) за любой заданный промежуток времени и за весь день. Высокая корреляция ПСС с суммарной радиацией [1–3] и среднедневным баллом облачности делает этот простой параметр полезным при проведении комплексных экспериментов.

Физической и методической основой измерения ПСС являются выделение из общего потока падающей радиации компоненты прямого солнечного излучения, ее сравнение с пороговым значением (соответствующим открытому Солнцу) и определение времени превышения порога. Внешний вид и блок-схема измерителя ФЭГ приведены на рис. 5.

Рис. 5. Внешний вид и блок-схема фотоэлектронного гелиографа: 1, 2 – экраны; 3 – фотоприемный блок; 4 – фотоприемник; 5 – осевой стержень для широтной установки; 6 – электронная плата предварительной обработки сигналов ПСС; 7 – схема индикаторного блока

Для выделения потока прямого излучения применяются экраны и диафрагмы, снижающие вклад рассеянного излучения. Экраны *1*, *2* формируют поле зрения фотоприемного устройства *3* в плоскости солнечного экваториала с линейным углом зрения в вертикальной плоскости ~ 27°. Фотоприемное устройство включает в себя три диафрагмированных фотодиода *4*, которые развернуты друг относительно друга таким образом, что их общий угол зрения в плоскости эква-

С.М. Сакерин, Д.М. Кабанов, С.А. Турчинович

ториала составляет не менее 270°. При движении Солнца по небосводу оно всегда остается в поле зрения одного из фотоприемников. Пространственный угол зрения каждого приемника составляет 0,785 ср, чем обеспечивается уменьшение влияния рассеянного излучения примерно в 8 раз. Дополнительное снижение фонового излучения достигается вычитанием из максимального сигнала («фон+Солнце») минимального – «фон». Текущее значение ПСС отображается на четырех-разрядном цифровом индикаторе пульта управления и параллельно передается на компьютер.

Технические характеристики ФЭГ	
Диапазон измерения ПСС, ч	9,99
Разрешающая способность, ч	0,01
Порог чувствительности ФПУ устанавливается	
эквивалентным порогу гелиографа ГУ-1, Вт/м ²	100
Соответствующая порогу минимальная высота Солнца, град	. 3
Габаритные размеры, мм	220

Фотометр лучистости неба включен в состав радиационного комплекса для измерений энергетической яркости неба и облаков в отдельных направлениях визирования. Фотометр ФЛН выполнен по простой схеме с использованием серийного фотообъектива «Гелиос-40-2», сменного интерференционного фильтра, кремниевого фотодиода ФД-24к и усилителя с переключаемым коэффициентом усиления. Фотометр устанавливается на штативе или на двухкоординатном поворотном столе для ориентации в заданном направлении верхней полусферы.

Основные характеристики ФЛН
аметр входного окна, мм
нейный угол поля зрения, град
ектральный диапазон, мкм
апазон азимутальных углов визирования, град
апазон зенитных углов, град
грешность фотометрирования, %
баритные размеры, мм Ø 80 × 360

Информационные сигналы от отдельных измерителей подаются на свои пульты (блоки) управления, а затем на аналого-цифровые преобразователи, встроенные в персональные компьютеры PC-386 (486). Разработанные программы обеспечивают первичную обработку экспериментальных данных в реальном масштабе времени, вывод графической и цифровой информации на экран компьютера для контроля за экспериментом. Одна из таких программ приведена на рис. 6.

Рис. 6. Условная схема обработки сигналов при измерении спектральных компонент КВ-радиации и влагосодержания

Комплекс приборов для радиационных исследований

В заключение отметим, что отдельные измерители имеют разную степень готовности. Фотометры АМСФ и ФЛН до модернизации уже использовались в полевых экспериментах и показали хорошие результаты. В 1995 г. в реальных условиях проводились исследования макетного варианта фотоэлектронного гелиографа, завершившиеся конструктивной доработкой. Наконец, два последних прибора – ДПР и СПУР – были разработаны в 1996 г. и прошли этап лабораторных испытаний и настроек.

- 1. Русин Н. П. Прикладная актинометрия. Л.: Гидрометеоиздат, 1979. 232 с.
- Перрен де Бришамбо Ш. Солнечное излучение и радиационный обмен в атмосфере. М.: Мир, 1966. 320 с.
 Радиационные характеристики атмосферы и земной поверхности / Под ред. К.Я. Кондратьева. Л.: Гидрометеоиздат, 1969. 564 с.
- 4. Климат Томска / Под ред. С.Д. Кошинского, Л.И. Трифоновой, Ц.А. Швер. Л.: Гидрометеоиздат, 1982. 176 с.
- 5. Кабанов Д.М., Сакерин С.М., Сутормин А.М., Турчинович С.А. // Оптика атмосферы и океана. 1993. Т. 6. № 4. С. 444–454.
- 6. Кабанов Д. М., Сакерин С. М., Турчинович С. А. // Региональный мониторинг Сибири. Ч. II. 1996. Томск: Изд. ИОА СО РАН. (В печати).
- 7. Горбенко Ю.Д., Зачек С.И. и др. / Полупроводниковый актинометр АП-1. // Тр.ГГО. 1985. Вып. 487. С. 16–20.
- 8. Зачек С.И., Тайц Д.А., Горбенко Ю.Д. / Полупроводниковый термоэлектрический пиранометр ПП-1. Тр.ГГО. 1985. Вып. 487. С. 63–71.
- 9. Федченко П.П., Кондратьев К.Я. Спектральная отражательная способность некоторых почв. Л.: Гидрометеоиздат, 1981. 232 с.
- 10. Harrison L., Michalsky J., Berndt J. Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements // Appl. Optics. 1994. V. 33. N 22. P. 5118-5125.
- 11. Высокочувствительные кремниевые фотоприемники ультрафиолетового, видимого и ближнего ИКдиапазонов спектра (180 – 1100 нм) // Приборы и техника экспериментов. 1991. № 6. С. 280–281.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 15 июля 1996 г.

S.M. Sakerin, D.M. Kabanov, S.A. Turchinovich. Instrumentation for Radiation Investigation.

Description and specifications of a measurement complex are presented. The complex includs two solar photometers, a spectral pyranometer within $0,3-1 \mu m$ spectral region, a remote pyranometer-reflectometer, a photoelectronmeter of solar radiance duration, and a sky brightness photometer. It is pointed out in the paper, that the developed instrumentation, combined with computer, provides real-time data obtaining of all key parameters of the shortwave radiation.