
       Atmos. Oceanic Opt.  /August  1999/  Vol. 12,  No. 8 A.I. Borodulin et al. 
 

0235-6880/99/08  718-03  $02.00  © 1999 Institute of Atmospheric Optics 
 

718 

 
 

Correlation function for concentration pulsation  
of an atmospheric pollutant 

 

A.I. Borodulin, B.M. Desyatkov, and V.V. Marchenko 
 

State Scientific Center of Virology and Biotechnology "Vektor,"  

Scientific Research Institute of Aerobiology, Novosibirsk Region  
Received March 3, 1999 

 
The probability density for gaseous and aerosol atmospheric pollutants’ concentration transfer 

from some initial state to a certain final state is obtained by use of the stationary probability density 
function which was earlier obtained theoretically and validated experimentally. Using these results, the 
correlation function for pulsation of pollutant concentration is obtained. 

 

The spread of aerosol and gaseous pollutants in the 
atmosphere is a random process. When it is simulated 
by use of semi-empirical equations of turbulent 

diffusion, one can determine the mathematical 

expectation of the pollutant concentration 
$
C and its 

variance σ2. However, this information is often 
insufficient in solving some practical problems. A more 
complete statistical description of the pollution spread 
at a given point of the space becomes possible if we 
know the probability density function for concentration 
f1(C), where C is the instantaneous value of 
concentration. In Ref. 1 this function is obtained under 
the assumption that variation of pollutant 
concentration is a Markovian process. In the stationary 
case, it takes the form 
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 γ = erf(β0);   β0 = 
$
C/β, 

where γ is the concentration intermittence; δ(...) is the 
Dirac delta function; β is the second parameter of the 
probability density function; erf(...) is the error 
integral. The function is obtained in Ref. 1 under the 
assumption that the period of concentration averaging T 
is much longer than the characteristic inner scale of the 
concentration pulsation τe (the Eulerian temporal scale) 
at a given point of the space. It is in this case that 
averaging over statistical ensemble can be replaced by 
"sliding" average over time: 

 
$
C = 

1
T
 ⌡⌠

t

t+T

 C(t) dt. 

Then the process C(t) can be treated as approximately 
Markovian.2 

The parameter β is related to mathematical 
expectation of the concentration and its variance σ2 by 
the following relation1: 
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The probability density (1) has been verified in 
the experiments conducted in a wind tunnel, as well as 
by data of independent field experiments, and by 
asymptotics of the theory of turbulent combustion for 
pollutant concentration at the axis of immersed 
turbulent jets and at their periphery.1 

Full statistical description of the Markovian  
stationary process of the concentration variation at a 
given point becomes possible if the probability density 

function for pollutant concentration transfer from one 
state to another during time t and, as a consequence, 
the correlation function of the concentration pulsation 
are known together with the probability density (1). 
The aim of this paper is to obtain these characteristics. 

According to the definition, the correlation 
function of a stationary random process C(t) is 
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where f2(C, C0, τ) is the probability density function 
of concentration transfer from the state C0 to the state 
C during time τ. 

Assuming, as before, that variation of 
concentration is a Markovian process, let us write the 
Fokker$Planck$Kolmogorov equation for the 
probability density function2 of the transfer, f2,  

 
∂f2
∂τ  + 

∂
∂C a(C) f2 $ 

1
2
 
∂2

∂C2 b(C) f2 = 0. (3) 

Here we cannot assume that τe is much less than T 
because the transition of concentration from one state 
to another can occur during time τ, which can be less 
than τe. However, we assume as earlier that the process 
C(t) is Markovian. The validity of the assumption is 
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not evident but some results of studying pollutant 
diffusion in the near-ground layer of the atmosphere 
will be given in the end of this paper to confirm this. 
Nevertheless, we cannot yet start solving equation (2). 
The matter is that the process C(t) is not continuous 
due to the effect of concentration intermittence. 
Actually, at a given point of the space, pollutant 
concentration can jump from a certain value to zero and 
to pass, also in a step-wise way, from zero value to a 
state with non-zero concentration. The equation (3) is 
inapplicable to description of such continuous-
discontinuous processes. At the same time, the inverse 
Kolmogorov equation2 related to the initial value of 
concentration C0 and initial time moment τ0 remains 
correct (the function (1) is also obtained by the use of 
inverse Kolmogorov equation1): 

 
∂f2
∂τ0

 + a(C0) 
∂f2
∂C0

 + 
1
2
 b(C0) 

∂2

 f2

∂C2

0

 = 0. (4) 

To determine the coefficients of this equation, let 
us note that the continuous part of the solution of a 
similar equation for the probability density  function of 
concentration (1) is formally a difference of two 
fundamental solutions of the heat transfer equation. 
This fact demonstrates close connection between the 
considered problem and the class of normal Markovian 
diffusion processes.2 This analogy makes it possible to 
assume the following form of the coefficients in 
Eq. (3): 

 a(C) = $ 
C $ 

$
C

τe
 ;   b(C) = 

1
τe

 β2. 

The structure of the expression for the probability 
density function of transfer is evidently similar to the 
above-mentioned probability density (1). The system of 
the initial and boundary conditions must be set as 
follows: 

 f2(C, τ0, C0, τ0) = δ(C $ C0), 

 f2(0, τ, C0, τ0) = f2(∞, τ, C0, τ0) = 0.   (5) 

After solving the problem (4), one should take 
τ0 = 0 in Eq.(5). 

For the equations like Eq. (4), of the parabolic 
type with a negative diffusion coefficient, the solution 
of Cauchy problem exists not for arbitrary initial 
conditions. In the cases when the solution’s existence is 
established, the Cauchy problem is ill-posed in the 
Hadamard sense. This manifests itself in the fact that a 
decrease of the perturbations’ wavelength in the initial 
conditions leads to an increase in the acceleration of 
their amplitude. As a result, the solution is quickly 
distorted. However, the theorem about uniqueness of 
the solution to Cauchy problem is valid for such 
equations if it exists.3 Thus, if an exact solution is 
obtained, one can be sure that it is unique. 

The exact analytical solution of the problem at 
τ0 = 0 has the form 
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This can be shown directly by substituting Eq. (6) into 
Eq. (4). In order to return to f2 as a function  
of τ0, one should change τ by τ $ τ0. If τ tends to 
infinity, we obtain the stationary probability density  
function (1). At the same time we see that the 
conditions (5) are satisfied. 

Now, according to Eq. (2), we obtain the 
correlation function of concentration pulsation 

 B(τ) = σ2 exp ($⏐τ⏐/τe).  (7) 

Owing to this formula, the density of spectral 
power of concentration pulsation S(f) has the form2 

 S(f) = 2 ⌡⌠
0

∞

 B(τ) cos(fτ) dτ = 
2σ2

 τe
1 + (fτe)

2 , (8) 

where f is the frequency of concentration pulsation. 
The validity of the above-stated assumption that 

the process C(t) is approximately Markovian can be 
demonstrated using data from Ref. 4. As was shown 
in that paper, one can observe two fluctuation 
regimes of pollutant concentration in the near-ground 
layer of the atmosphere: "transition" and 
"equilibrium."  The transition regime is characterized 
by the fact that, together with the part of spectral 
power of concentration pulsation which corresponds 
to the equilibrium law f ~ $5/3, one can observe the 
pulsation obeying the law f ~ $2/3. The latter works 
at the values of the dimensionless frequency $ τef of 
the order of two, and the law of "five thirds" at the 
dimensionless frequency greater than seven. The 

Figure 1 presents the dimensionless density of spectral 
power (8) as a function of dimensionless frequency. 
The straight lines corresponding to the laws of "five 
thirds" and "two thirds," which were discussed above, 
are also presented in the Figure. We see that the 
density of spectral power which was obtained 
theoretically under the assumption that the process 
C(t) is Markovian satisfactorily corresponds to S(f) 
observed as a function of frequency in the 
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experiments conducted in the near-ground layer of the 
atmosphere. 
 

 
 

Fig. 1. The density of spectral power f S(f)/(τ
e
 σ

2
) as a 

function of τ
e
f. 

Thus, we have obtained a complete statistical 
description for the Markovian stationary process of 
atmospheric pollutant concentration variation at a 
given point. To make use of the obtained results, one 
has to know all three statistical characteristics of the 
process: the mathematical expectation of concentration, 
its variance, and Eulerian temporal scale of the 
concentration pulsation. 
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