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The iteration procedure for elimination of the smoothing error occurring when phase 

unwrapping from its principal value by the least-square method is described. As is shown by the 
example of a synthesized aperture radar interferogram, even two applications of the least-square 
method are sufficient for total elimination of the error. 

 

Introduction 

Phase unwrapping from the digital phase data 
limited by its principal value (modulo 2π) is the last 
step of many algorithms of the image numerical 
analysis. It is also the integral part of the majority of 
interferometric methods of optical coherent metrology 
and profilometry, as well as radar monitoring of the 
underlying surface topography. As a rule, the result 
of interferometric measurements is a map of 
interferometric bands, i.e., two-dimensional cosine 
distribution of the phase modulated by the measured 
physical quantity, where the phase is defined only 
within the limits of its principal value. 

The phase unwrapping is carried out from the 
phase gradient g(r), determined from the 
interferogram within the limits of the principal 
value: 

 g(r) = P[∇P[ψ(r)]], (1) 

where the operator P[…] means the reduction of the 
parameter in parenthesis to the principal phase value 
interval [−π, π); r = {x, y} is the two-dimensional 

vector; ∇ = 

∂

∂x
 i + 

∂

∂y
 j. 

To determine ψ(r), one can integrate Eq. (1): 

 ψ(r) = ψ0 + 
⌡⌠
L0

L(r)
 

 

dlog(r); ψ0 = ψ0(L0). (2) 

Here L(r) is the integration path over the g(r) 
gradient domain. Therefore, with the known 
gradient, the phase ψ can be determined accurate to a 
constant. If amplitude fluctuations of interferometric 
signals are small, then the principal phase value 
gradient, limited by its own principal value, is free of 
the solenoidal component (∇ × g = 0) and coincides 
with the true phase gradient. In this case, the 
integral (2) is independent of the integration path, 
and we obtain a unique solution for the phase 
(accurate to a constant). In the presence of noises 
(the appearance of the speckle-structure of the 
interferometric signal field) or a sharp altitude 
difference on the reflecting surface, the limits of 
phase gradient variations can exceed 2π, therefore, 

the persistence of the phase gradient vector field is 
broken down (∇ × g ≠ 0), there appear branch points, 
and the phase surface becomes discontinuous. This 
leads to the integration path dependence of 
integral (2) and to an ambiguity in the phase 
solution. The ignoring of the violation of the g(r) 
vector potentiality due to noises can result in large 
(∼ 2π) errors in the phase determination, which are 
accumulated while integrating in Eq. (2). 

There are two methods allowing one to avoid 
the ambiguous solution when determining the phase 
from its gradient. The first one consists in bypass of 
the domain ∇ × g ≠ 0 while integrating. The second 
one is based on determination of the phase ψ from 
the solution of Eq. (1) and consists in minimization 
of the quadratic form of the gradient difference 
between wrapped and unwrapped phases. The branch 
cut technique1,2 belongs to the first type, while the 
least-square method (LSM)2,3 – to the second one. 
The branch cut technique assumes that the phase 
branch points appear pairwise and are phase-cut 
coupled. Thus, a tree of cuts is constructed so that to 
connect a positive point by a line with the nearest 
negative one. After all cuts have been made, the 
integration is carried out along the path 
nonintersecting the constructed tree. A large number 
of algorithms for phase unwrapping2,4–9 realize one or 
another modification of the above methods. 

Both methods have disadvantages. The branch 
cut technique requires finding paired branch points, 
which is not always possible. The LSM, though 
suppresses noises, caused mainly by fluctuations of 
interfering signals, reconstructs the phase nearby the 
phase-surface discontinuities between the paired 
points with errors. The both methods lead to errors 
resulting in the loss of the so-called “hidden 
phase,”10 when phase jumps greater than 2π are 
caused by properties of the object under study rather 
than by signal and noise fluctuations. 

The algorithm of the “improved” least-square 
method was suggested and approved in Refs. 10–12. 
The method determines the hidden phase nearby the 
phase-surface discontinuities correctly in the case of 
the proper identification of all branch points and 
their pairness. But this is not always possible. 
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Besides, the common LSM disadvantage inheres in 
the algorithm: it leads to the phase unwrapping error 
nearby the phase discontinuities even in the case of 
exact determination of the hidden phase due to 
smoothing properties of LSM. A way to reduce the 
smoothing error is suggested in this paper. 

Phase unwrapping 

Consider the procedure of phase unwrapping 
from its principal value by the example of an 
interferogram obtained with a synthesized aperture 
radar over the New Caledonia (France) afforded by 
the European Space Agency (Copyright by 
CNES/ESA). Figure 1 shows an interferogram 
fragment of 128 × 128 points. 

 

 
Fig. 1. Interferogram. Signs ● and ○ correspond to branch 

points. 
 

Interferogram values are limited within [−π, π) 
range, so, to reconstruct the full phase value (to 
stitch phase jumps) the least-square method can be 
used. However, as is shown by the analysis based on 
the profile summation of phase differences,10,11,13 the 
solenoidal part of the phase gradient in the 
interferogram is not equal to zero everywhere and the 
interferogram includes the phase branch points 
(Fig. 1). In this case, the LSM is incapable to 
unwrap the phase throughout its variation range since 
it does not “see” the hidden phase determined by 
phase surface discontinuities passing through paired 
positive and negative points. Therefore, the improved 
least-square method (ILSM) was used,10,11 allowing 
calculation of the hidden phase component as well. 
Results of the phase unwrapping by this method are 
shown in Fig. 2. 

Let ϕ(r) denote the phase, which needs to be 
unwrapped from its principal value, ϕLSM(r) is the 
phase unwrapped by LSM, ϕhid(r) is the hidden phase, 
ϕILSM(r) = ϕLSM(r) + ϕhid(r) is the phase unwrapped by 
the improved LSM. Then, following Ref. 14, the 
ILSM phase unwrapping error can be defined as  

P[Δsm(r)] = P[P[ϕ(r)] − P[ϕILSM(r)]] = 

 = P[P[ϕ(r)] − P[ϕLSM(r) + ϕhid(r)]]. (3) 

 
Fig. 2. Phase unwrapping from the interferogram in Fig. 1 
by the improved LSM. 

 

The 2D-distribution of the error of ILSM phase 
unwrapping, limited by its principal value, is shown 
in Fig. 3. 

 

 
Fig. 3. Convoluted error of the ILSM phase unwrapping. 
 

The error is evidently large and gets values 
throughout the range from −π to π radians, though 
theoretically it should be close to zero.10,11 Such a 
difference between P[ϕ(r)] and P[ϕILSM(r)] is 
explained by the smoothing effect of the LSM, which 
interpolates the phase in the region of “unnoticeable” 
discontinuities from values of the “smooth” phase 
determined by the potential part of the phase gradient. 
 This error can be interpreted as the 
underunwrapped phase part. Let us unwrap the phase 
function P[Δsm(r)] calculated within the limits of the 
principal value, using the LSM and add the results to 
ϕILSM(r). Thus, we obtain the estimation of the phase 
∼ϕ(r) = ϕILSM(r) + Δsm(r) unwrapped from the principal 
value. Let us apply the wrapping operator P and find 
the difference between principal values of phase 

functions ϕ(r) and ∼ϕ(r) within the limits of the 
principal value: 

 P[Δ1sm] = P[P[ϕ(r)] − P[∼ϕ(r)]] , (4) 
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which, similarly to Eq. (3), can be also interpreted as 
the error of unwrapping or the underunwrapped part 
of the phase ϕ(r). The LSM-unwrapping allows one 
to find the estimation 

 ∼ϕ1(r) = ∼ϕ(r) + Δ1sm = ϕILSM + Δsm + Δ1sm  

and then the error 

 P [Δ2sm] = P {P[ϕ(r)] − P[∼ϕ1(r)]} . (5) 

The LSM application to Eq. (5) gives the 
estimation of the unwrapped phase 

~ϕ2(r) = ~ϕ1(r) + Δ2sm = ~ϕ(r) + Δ1sm + Δ2sm = 

 = ϕILSM + Δsm + Δ1sm + Δ2sm. (6) 

This iteration process can be continued until the 
required accuracy of the phase estimation is attained. 
The phase function Δsm(r) for the interferogram in 
Fig. 1 is shown in Fig. 4. 

 

 
Fig. 4. Error Δsm(r). 

 

 
Fig. 5. Phase unwrapping error after the second LSM 
iteration. 

As is seen, the part of the interferogram phase 
function in Fig. 1, “omitted” by the LSM, can take 
values grater than π. The error (4) is shown in Fig. 5. 

It can be considered as zero, i.e., two iterations 
are sufficient to eliminate the smoothing error. 

Conclusion 

The suggested iteration procedure eliminates the 
smoothing error occurring when phase unwrapping 
from its principal value by the least-square method. 
The synthesized aperture radar interferogram 
exemplifies sufficiency of the double LSM application 
for total elimination of the error. The use of the 
improved LSM in the first iteration allows the 
accounting for the hidden phase. However, if to 
consider the presence of branch points as the result of 
noises rather than peculiarities of an object under 
study, there is no need to account for the hidden 
phase, and the standard LSM can be used in the first 
iteration as well. 
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