Vol. 27, issue 09, article # 8

Kamardin A. P., Odintsov S. L., Skorokhodov A. V. Identification of internal gravity waves in the atmospheric boundary layer from sodar data. // Optika Atmosfery i Okeana. 2014. V. 27. No. 09. P. 812-818 [in Russian].
Copy the reference to clipboard
Abstract:

The paper describes a technique for automatic identification of internal gravity (buoyancy) waves in the atmospheric boundary layer from results of remote acoustic sounding. The technique is based on the analysis of sodar echograms with the use of artificial intelligence and digital image processing methods. The technique is intended for identification of a certain type of manifestation of internal gravity waves in sodar echograms and tested with a great number of experimental data. The periods and amplitudes of internal gravity waves of this type are estimated from a test sample of 72 sodar echograms.

Keywords:

atmospheric boundary layer, internal gravity waves, sodar

References:

1. Gossard Je., Huk U. Volny v atmosfere. M: Mir, 1978. 532 p.
2. Grigor'ev G.I. Akustiko-gravitacionnye volny v atmosfere Zemli (obzor) // Izv. vuzov. Radiofiz. 1999. V. 42, N 1. P. 3–24.
3. Chimonas G. Steps, waves and turbulence in the stably stratified planetary boundary layer // Boundary-Layer Meteorol. 1999. V. 90, N 3. P. 397–421.
4. Reinking R.F., Frisch A.S., Orr B.W., Korn D.L., Bissonnette L.R., Roy G. Remote sensing observations of effects of mountain blocking on travelling gravity-shear waves an associated clouds // Boundary-Layer Meteorol. 2003. V. 109, N 3. P. 255–284.
5. Petenko I., Mastrantonio G., Viola A., Argentini S., Pietroni I. Wavy vertical motions in the ABL observed by sodar // Boundary-Layer Meteorol. 2012. V. 143, N 1. P. 125–141.
6. Kashkin V.B. Vnutrennie gravitacionnye volny v troposfere // Optika atmosf. i okeana. 2013. V. 26, N 10. P. 908–916.
7. Martucci G., Mattey R., Mitev V., Richner H. Frequency of boundary-layer-top fluctuations in convective and stable conditions using laser remote sensing // Boundary-Layer Meteorol. 2010. V. 135, N 2. P. 313–331.
8. Bardakov R.N., Chashechkin Ju.D. Raschet i vizualizacija dvumernyh prisoedinennyh vnutrennih voln v vjazkoj jeksponencial'no stratificirovannoj zhidkosti // Izv. RAN. Fiz. atmosf. i okeana. 2004. V. 40, N 4. P. 531–544.
9. Svirkunov P.N., Kalashnik M.V. Fazovye kartiny voln ot lokalizovannyh istochnikov, dvizhushhihsja otnositel'no stratificirovannoj vrashhajushhejsja sredy (peremeshhajushhijsja uragan, orograficheskoe prepjatstvie) // Dokl. RAN. 2012. V. 447, N 4. P. 396–400.
10. Zilitinkevich S.S., Elperin T., Kleorin N., L’vov V., Rogachevskii I. Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves // Boundary-Layer Meteorol. 2009. V. 133, N 2. P. 139–164.
11. Largeron Y., Staquet C., Chamel C. Characterization of oscillatory motion in the stable atmosphere of a deep valley // Boundary-Layer Meteorol. 2013. V. 148, N 2. P. 439–459.
12. Gladkih V.A., Makienko A.Je., Fjodorov V.A. Akusticheskij doplerovskij lokator «Volna-3» // Optika atmosf. i okeana. 1999. V. 12, N 5. P. 437–444.
13. Fjodorov V.A. Izmerenie sodarom «Volna-3» parametrov radial'nyh komponent vektora skorosti vetra // Optika atmosf. i okeana. 2003. V. 16, N 2. P. 151–155.
14. Fjodorov V.A. K izmereniju sodarom parametrov modulja i napravlenija gorizontal'noj skorosti vetra // Optika atmosf. i okeana. 2005. V. 18, N 1–2. P. 91–99.
15. Odintsov S.L. Analysis of microstructure of short-period internal gravity waves // Proc. 11th Int. Sympos. Acoust. Remote. Sens. Rome, Italy, 24–28 June 2002. P. 271–274.
16. Odincov S.L. Osobennosti dvizhenij nizhnego sloja atmosfery pri prohozhdenii vnutrennih gravitacionnyh voln // Optika atmosf. i okeana. 2002. V. 15, N 12. P. 1131–1136.
17. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka, 1967. 548 p.
18. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L: Gidrometeoizdat, 1989. 264 p.
19. Monin A.S. Teoreticheskie osnovy geofizicheskoj gidrodinamiki. L: Gidrometeoizdat, 1988. 424 p.
20. Hooke W.H., Young J.M., Beran D.W. Atmospheric waves observed in the planetary boundary layer using an acoustic sounder and microbarograph array // Boundary- Layer Meteorol. 1972. V. 2, N 3. P. 371–380.
21. Beran D.W., Hooke W.H., Clifford S.F. Acoustic echo- sounding techniques and their application to gravity-wave, turbulence, and stability studies // Boundary-Layer Meteorol. 1973. V. 4, N 1–4. P. 133–153.
22. Argentini S., Mastrantonio G., Petenko I., Pietroni I., Viola A. Use of high-resolution sodar to study surface-layer turbulence at night // Boundary-Layer Meteorol. 2012. V. 143, N 1. P. 177–188.
23. Lyulykin V. Braid patterns of Kelvin–Helmholtz billows in sodar return signal: A composite analysis / Ext. Abstr. ISARS2012, 5–8 June 2012, Boulder, Colorado. P. 2704–2711.
24. Kurbackij A.F., Kurbackaja L.I. O turbulentnom chisle Prandtlja v ustojchivo stratificirovannom atmosfernom pogranichnom sloe // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 2. P. 187–196.
25. Kurbackij A.F., Kurbackaja L.I. O vihrevom peremeshivanii i jenergetike turbulentnosti v ustojchivom atmosfernom pogranichnom sloe // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 666–673.
26. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features // Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA, December. 2001. V. 1. P. 511–¬518.
27. OpenCV [Electronic resource] / Open Source Computer Vision, 2009–2013. URL: http://www.opencv.org/ (accessed 18.12.2013).
28. Gonsales R., Vuds R. Cifrovaja obrabotka izobrazhenij. M.: Tehnosfera, 2005. 1072 p.
29. Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting // J. Comput. System Sci. 1997. V. 55, N 1. P. 119–139.
30. Canny J. A computational approach to edge detection // IEEE Trans. on Pattern Analysis and Machine Intelligence. 1986. V. PAMI¬8, N 6. P. 679–698.
31. Lyulykin V., Kouznetsov R. Features of Kelvin–Helmgoltz billows in a stable ABL derived from sodar data: Ext. Abstr. ISARS2012, 5–8 June 2012. Boulder, Colorado. 2012. P. 150–152.