Vol. 29, issue 02, article # 6

Yastremskii A. G., Ivanov M. V., Ivanov N. G., Losev V. F. Amplification of picosecond pulses in a gas amplifier of THL-100 laser system. // Optika Atmosfery i Okeana. 2016. V. 29. No. 02. P. 121–127. DOI: 10.15372/AOO20160206 [in Russian].
Copy the reference to clipboard
Abstract:

Evolution of spatial and energy characteristics of start pulse with energy of 0.8 mJ and duration of 2 ps in the amplifier of THL-100 laser system have been studied experimentally and by numerical simulation. Laser radiation energy E = 2 J was obtained experimentally. In this work we present a 3D amplification model of conically diverging laser beams, which takes into account the spatial inhomogeneity of the pump and the geometry of THL-100 laser system amplifier. Description and the test results of the model are submitted. At the start pulse energy of 0.8 mJ the calculated radiation energy at the amplifier output reaches 2.4 J. Simulation results show that maximal intensity of the laser radiation in this mode reaches P = 60 GW × сm–2. Evolution of energy and space-time structure of the laser pulse in the amplifier was investigated. It is shown that in the ideal case (excluding the processes of nonlinear interaction of laser beam with the active medium), at the start pulse energy of 5 mJ, the energy of the laser radiation at the output of the amplifier is increased to Eout = 3.8 J. In this mode, the maximal radiation intensity reaches a value of I = 148 GW × сm–2.

Keywords:

amplifier, THL-100 laser system, the spatial intensity distribution, numerical simulation

References:

  1. Aristov A.I., Grudcyn Ja.V., Zubarev I.G., Ivanov N.G., Konjashhenko A.V., Krohin O.N., Losev V.F., Mavrickij A.O., Mamaev S.B., Mesjac G.A., Miheev L.D., Panchenko Ju.N., Rastvorceva A.A., Ratahin N.A., Sentis M., Starodub A.N., Tenjakov S.Ju., Uteza O., Cheremiskin V.I., Jalovoj V.I. Gibridnaja femtosekundnaja lazernaja sistema na osnove fotohimicheskogo XeF(C–A)-usilitelja s aperturoj 12 sm // Optika atmosf. i okeana. 2009. V. 22, N 11. P. 1029–1034.
  2. Losev V., Alekseev S., Ivanov N., Kovalchuk B., Mikheev L., Mesyats G., Panchenko Yu., Ratakhin N., Yastremsky A. Development of a hybrid (solid state/gas) femtosecond laser system of multiterawatt peak power // Proc. SPIE Int. Soc. Eng. 2010. V. 7751. P. 9–12.
  3. Losev V., Alekseev S., Ivanov N., Kovalchuk B., Mikheev L., Mesyats G., Panchenko Yu., Ratakhin N., Yastremsky A. Prospects of development of hybrid (solid state/gas) ultra-high power femtosecond laser system on the basis of XeF(C–A) amplifier // Opt. Prec. Eng. 2011. V. 19, N 2. P. 252–259.
  4. Alekseev S.V., Ivanov N.G., Koval'chuk B.M., Losev V.F., Mesjac G.A., Miheev L.D., Panchenko Ju.N., Ratahin N.A., Jastremskij A.G. Teravattnaja gibridnaja lazernaja sistema THL-100 na baze fotodissocionnogo XeF(S–A)-usilitelja // Optika atmosf. i okeana. 2012. V. 25, N 3. P. 221–225.
  5. Alekseev S.V., Aristov A.I., Ivanov N.G., Koval'chuk B.M., Losev V.F., Mesyats G.A., Mikheev L.D., Panchenko Yu.N., Ratakhin N.F. Multiterawatt femtosecond hybrid system based on a photodissociation XeF(C–A) amplifier in the visible range // Quantum Electron. 2012. V. 42, N 5. Р. 377–378.
  6. Alekseev S.V., Aristov A.I., Grudtsyn Ya.V., Ivanov N.G., Koval'chuk B.M., Losev V.F., Mamaev S.B., Mesyats G.A., Mikheev L.D., Panchenko Yu.N., Polivin A.V., Stepanov S.G., Ratakhin N.A., Yalovoi V.I., Yastremskii A.G. Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: State of the art and prospects // Quantum Electron. 2013. V. 43, N 3. P. 190–200.
  7. Alekseev S.V., Ivanov N.G., Losev V.F., Panchenko Ju.N., Jastremskij A.G. Chislennoe modelirovanie usilenija korotkih impul'sov v aktivnoj srede XeF(C–A)-usilitelja // Optika atmosf. i okeana. 2013. V. 26, N 10. P 863–866.
  8. Ivanov N.G., Losev V.F., Panchenko Ju.N., Jastremskij A.G. Vlijanie sostava gazovoj smesi na dissipaciju jenergii nakachki v XeF(C–A)-usilitele gibridnoj femtosekundnoj lazernoj sistemy THL-100 // Optika atmosf. i okeana. 2014. V. 27, N 4. P. 326–331.
  9. Kuznetsova T.I., Mikheev L.D. Amplification of short light pulses with a spherical wave front // Quantum Electron. 2008. V. 38, N 10. P. 969–975.
  10. Alekseev S.V., Aristov A.I., Ivanov N.G., Kovalchuk B.M., Losev V.F., Mesyats G.A., Mikheev L.D., Panchenko Yu.N., Ratakhin N.A. Multiterawatt femtosecond laser system in the visible with photochemically driven XeF(C–A) boosting amplifier // Laser Part. Beams. 2013. V. 31, N 1. P. 17–21.
  11. Mikheev L.D., Stavrovskii D.B., Zuev V.S. Photodissociation XeF laser operating in the visible and UV regions // J. Russ. Laser Res. 1995. V. 16, N 5. P. 427–475.
  12. Malinovskii G.Ya., Mamaev S.B., Mikheev L.D., Moskalev T.Yu., Sentis M.L., Cheremiskin V.I., Yalovoi V.I. Numerical simulation of the active medium andinvestigation of the pump source for the development of a photochemical XeF(C–A) amplifier of femtosecond optical pulses // Quantum Electron. 2001. V. 31, N 7. P. 617–622.
  13. Tcheremiskine V.I. Studies of the photodissociation wave formation. Application to the active medium of the hotolytical XeF laser // Ph.D. Thesis. University of Aix-Marseille II (1999). URL: http://www.lp3.univmrs
  14. Bishel W.K., Eckstrom D.J., Walker H.C., Tilton R.A. Photolytically pumped XeF(C–A) laser studies // J. Appl. Phys. 1981. V. 52, N 7. P. 4429–4434.
  15. Frantz L.M., Nodvik J.S. Theory of pulse propagation in a laser amplifier // Appl. Phys. 1963. V. 34, N 8. P. 2346–2349.
  16. Black G., Sharpless R.L., Lorents D.C., Huestis D.L., Gutcheck R.A., Bonifild T.D., Helms D.A., Walters G.K. XeF2 photodissociation studies. I. Quantum yields and kinetics of XeF(B) and XeF(C) // J. Chem. Phys. 1981. V. 75, N 10. P. 4840–4846.
  17. Brashers H.C., Setser D.W. Transfer and quenching rate constants for XeF(B) and XeF(C) state in low vibrational levels // J. Chem. Phys. 1982. V. 76, N 10. P. 4932–4946.
  18. Losev V., Alekseev S., Ivanov N., Kovalchuk B., Mikheev L., Mesyats G., Panchenko Yu., Puchikin A., Ratakhin N., Yastremsky A. Development of a 100-trawatt hybrid femtosecond laser system // Proc. SPIE. 2011. V. 7993. 799317 (5 p.).
  19. Yastremskii A.G., Ivanov N.G., Losev V.F., Panchenko Yu.N. Modeling of lasing possibility in XeF(C–A) amplifier of the THL-100 laser system // Proc. SPIE. 2015. V. 9255. 925528 (5 p.).