Vol. 29, issue 05, article # 6

Belov V. V., Tarasenkov M. V. Three algorithms of statistical simulation in problems of optical communication on scattered radiation and bistatic sensing. // Optika Atmosfery i Okeana. 2016. V. 29. No. 05. P. 397–403. DOI: 10.15372/AOO20160506 [in Russian].
Copy the reference to clipboard
Abstract:

Three algorithms of the Monte Carlo method for calculation of impulse transfer function in channels of laser sensing and communication are considered: the local estimation algorithm, the double local estimation algorithm, and the suggested modified double local estimation algorithm. Results of testing of the algorithms and their comparison are considered. For a homogeneous medium, the complexities of the algorithms are compared, demonstrating under what conditions the suggested algorithm is advantageous as compared to the double local estimation algorithm. The contributions of double, triple, and higher-order scattering are numerically estimated. High contribution of multiple scattering proves the expediency of application of the Monte Carlo method for solving problems of this type.

Keywords:

method of Monte Carlo, repeated dispersion, optical communication, bistatic sensing, pulse reaction

References:

  1. Reagan J.A., Byrne D.M., King M.D., Spinhirne J.D., Herman B.M. Determination of the сomplex refractive- index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements // J. Geophys. Res. Oceans. 1980. V. 85, N C3. P. 1591–1599.
  2. Meki K., Yamaguchi K., Li X., Saito Y., Kawahara T.D., Nomura A. Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere // Opt. Lett. 1996. V. 21, N 17. P. 1318–1320.
  3. Sugimoto N. Two-color dual-polarization pulsed bistatic lidar for measuring water cloud droplet size // Opt. Rev. 2000. V. 7, N 3. P. 235–240.
  4. Barnes J.E., Sharma N.C.P., Kaplan T.B. Atmospheric aerosol profiling with a bistatic imaging lidar system // Appl. Opt. 2007. V. 46, N 15. P. 2922–2929.
  5. Olofson K.F.G., Witt G., Peterson J.B.C. Bistatic lidar mesurements of clouds in the Nordic Arctic region // Appl. Opt. 2008. V. 47, N 26. P. 4777–4786.
  6. Kablukova E.G., Kargin B.A. Jeffektivnye diskretno-stohasticheskie modifikacii lokal'nyh ocenok metoda Monte-Karlo dlja zadach lazernogo zondirovanija rasseivajushhih sred // Vychislit. tehnol. 2012. V. 17, N 3. P. 70–82.
  7. Kablukova E.G., Kargin B.A., Lisenko A.A., Matvienko G.G., Chesnokov E.N. Chislennoe statisticheskoe modelirovanie rasprostranenija teragercovogo izluchenija v oblachnom ajerozole // Optika atmosf. i okeana. 2014. V. 27, N 11. P. 939–948.
  8. Kablukova E.G., Kargin B.A., Lisenko A.A., Matvienko G.G. Chislennoe modelirovanie poljarizacionnyh harakteristik jehosignala pri nazemnom zondirovanii oblakov v teragercovom diapazone // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 892–900; Kablukova E.G., Kargin B.A., Lisenko A.A., Matvienko G.G. Numerical simulation of polarization characteristics of an echo signal in the process of ground-based cloud sensing in the terahertz range // Atmos. Ocean. Opt. 2016. V. 29, N 1. P. 33–41.
  9. Krekov G.M. Metod lokal'nyh ocenok potoka v zadachah shirokopolosnogo lazernogo zondirovanija // Optika atmosf. i okeana. 2010. V. 23, N 1. P. 47–55; Krekov G.M. Technique fot the local estimation of fluxes in broadband lidar sessing problems // Atmos. Ocean. Opt. 2010. V. 23, N 2. P. 152–160.
  10. Krekov G.M., Krekova M.M., Suhanov A.Ja. Ocenka jeffektivnosti ispol'zovanija perspektivnyh lidarov belogo sveta dlja zondirovanija mikrofizicheskih parametrov sloistoj oblachnosti: 2. Parametricheskaja modifikacija iteracionnogo metoda reshenija lidarnogo uravnenija // Optika atmosf. i okeana. 2009. V. 22, N 8. P. 795–802.
  11. Yin H., Chang S., Jia H., Yang Ji., Yang Ju. Non-line-of-sight multiscatter propagation model // J. Opt. Soc. Amer. 2009. V. 26, N 11. P. 2466–2469.
  12. Ding H., Chen G., Majumdar A. K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE J. Selec. Areas. Commun. 2009. V. 27, N 9. P. 1535–1544.
  13. Yin H., Jia H., Zhang H., Wang X., Chang S., Yang J. Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation // J. Opt. Soc. Amer. A. 2011. V. 28, N 10. P. 2082–2085.
  14. Han D., Fan X., Zhang K., Zhu R. Research on multiple-scattering channel with Monte Carlo model in UV atmosphere communication // Appl. Opt. 2013. V. 52, N 22. P. 5516–5522.
  15. Xiao H., Zuo Y., Wu J., Li Y., Lin J. Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium // Opt. Lett. 2013. V. 38, N 17. P. 3366–3369.
  16. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Iva-nov V.V., Fedosov A.V., Troitskii V.O., Shiyanov D.V. Atmospheric bistatic communication channels with scattering. Part 1. Methods of study // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 364–370.
  17. Yin H., Chang S., Wang X., Yang Ji., Yang Ju., Tan J. Analytical model of non-line-of-sight single-scatter propagation // J. Opt. Soc. Amer. A. 2010. V. 27, N 7. P. 1505–1509.
  18. Elshimy M.A., Hranilovic S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries // J. Opt. Soc. Amer. A. 2011. V. 28, N 3. P. 420–428.
  19. Lotova G.Z. Modification of the double local estimate of the Monte-Carlo method in radiation transfer theory // Rus. J. Numerical Analysis and Mathematical Modeling. 2011. V. 26, N 5. P. 491–500.
  20. Mihajlov G.A., Lotova G.Z. Chislenno-statisticheskaja ocenka potoka chastic s konechnoj dispersiej // Dokl. AN. 2012. V. 447, N 1. P. 18–21.
  21. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinjan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. Novosibirsk: Nauka. Sib. otd-e, 1976. 284 p.
  22. Sushkevich T.A. Matematicheskie modeli perenosa izluchenija. M.: BINOM. Laboratorija znanij, 2005. P. 14.