Vol. 32, issue 10, article # 1

Bogdanova Yu. V., Klimeshina T. E., Rodimova O. B. The dimer absorption within the water vapor bands in the IR region. // Optika Atmosfery i Okeana. 2019. V. 32. No. 10. P. 801–807. DOI: 10.15372/AOO20191001 [in Russian].
Copy the reference to clipboard
Abstract:

Contributions of the water dimer absorption to the continuum absorption within the IR water vapor spectrum are examined. They are deduced as the difference between experimental data and the asymptotic line wing theory (ALWT) calculation data. In the ALWT calculations, the line contours are used with parameters fitted to the Burch experimental data and to the FTIR measurements in the IR water vapor windows. Calculation with the line contour describing the Burch data in the 2000–3000 m-1 region gives a good agreement with the CRDS data between other water vapor bands. Within the water vapor bands both contour types provide close absorption values presumably due to stable dimers.

Keywords:

water vapor, continuum absorption, water vapor dimers, the Burch continuum, the FTIR and CRDS measurements

References:

  1. Ptashnik I.V. Dimery vody: «neizvestnyj» eksperiment // Optika atmosf. i okeana. 2005. V. 18, N 4. P. 359–362.
  2. Burch D.E. Absorption by H2O in narrow windows between 3000–4200 cm-1 // Report N AFGL-TR-85-0036.
  3. Schofield D.P., Kjaergaard H.G. Calculated OH- stretching and HOH-bending vibrational transitions in the water dimer // Phys. Chem. Chem. Phys. 2003. V. 5. P. 3100–3105.
  4. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: Evidence for water dimers // Q. J. R. Meteorol. Soc. 2004. V. 130. P. 2391–2408.
  5. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiation. Transfer. 2008. V. 109. P. 831–852.
  6. Stogryn D.E., Hirshfelder J.O. Contribution of bound, metastable and free molecules to the second virial coefficients and some properties of double molecules // J. Chem. Phys. 1959. V. 31. P. 1531–1345.
  7. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
  8. Ptashnik I.V., Klimeshina T.E., Solodov A.A., Vigasin A.A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 mm bands // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 228. P. 97–105.
  9. Serov E.A., Odintsova T.A., Tretyakov M.Yu., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12.
  10. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
  11. Bogdanova Yu.V., Rodimova O.B. Sootnoshenie mezhdu pogloshcheniem monomerami i dimerami vodyanogo para v predelakh vrashchatel'noj polosy Н2О // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 341–348; Bogdanova Yu.V., Rodimova O.B. Ratio between monomer and dimer absorption in water vapor within the H2O rotational band // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 457–465.
  12. Odintsova T.A., Tretyakov M.Yu., Pirali O., Roy P. Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 187. P. 116–123.
  13. Bogdanova Yu.V., Rodimova O.B. O vkladakh dimernogo i monomernogo pogloshcheniya v IK-spektry vodyanogo para // Optika atmosf. i okeana. Fizika atmosfery: Sb. dokl. XXIV mezhdunar. simpoz. Tomsk: Izd-vo IOA SO RAN, 2018. P. A19–A22. 1 elektron. opt. disk (CD-ROM).
  14. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114, N D21301. 23 p.
  15. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. 2011. V. 116, N D16305. 16 p.
  16. Вaranov Yu.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313.
  17. Burch D., Alt R. Continuum absorption by H2O in the 700–1200 and 2400–2800 cm-1 windows // Report N AFGL-TR-84-0128. Hanscom AFB, MA. 1984. 31 p.
  18. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini D., Campargue A. The water vapor self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 mm // Atmos. Meas. Tech. 2018. V. 11. P. 2159–2171.
  19. Klimeshina Т.Е., Bogdanova Yu.V., Rodimova O.B. Kontinual'noe pogloshchenie vodyanym parom v oknakh prozrachnosti atmosfery 8–12 и 3–5 mm // Optika atmosf. i okeana. 2011. V. 24, N 9. P. 765–769; Klimeshina Т.Е., Bogdanova Yu.V., Rodimova O.B. Continuum absorption by water vapor in the 8–12 and 3–5 mm atmospheric transparency windows // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 71–76.
  20. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoj teorii. Novosibirsk: Nauka, 1984. 167 p.
  21. Burch D.E., Gryvnak D.A., Pembrook J.D. Investigation of the absorption of infrared radiation by atmospheric gases: Water, nitrogen, nitrous oxide // Report N AFCRL-71-0124. U-4897. 1971.
  22. Burch D.E. Continuum absorption by atmospheric H2O // Proc. SPIE. 1981. V. 277. P. 28–39.
  23. Hartmann J.M., Perrin M.Y., Ma Q., Tipping R.H. The infrared continuum of pure water vapor: Calculations and high-temperature measurements // J. Quant. Spectrosc. Radiat. Transfer. 1993. V. 49. P. 675–691.
  24. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128. P. 124313-1–17.
  25. Klimeshina Т.Е., Rodimova O.B. Raschet kontinual'nogo pogloshcheniya N2O v IK-diapazone, osnovannyj na izmereniyakh Bercha // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 628–632.
  26. Kjaergaard H.G., Garden A.L., Chaban G.M., Gerber R.B., Matthews D.A., Stanton J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A 2008. V. 112. P. 4324–4335.
  27. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.
  28. Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near-infrared water vapor self-continuum: A test of the MT_CKD model // J. Geophys. Res.: Atmos. 2016. V. 121. P. 13180–13203.
  29. Richard L., Vasilchenko S., Mondelain D., Ventrillard I., Romanini D., Campargue A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 mm transparency windows // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 171–179.
  30. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391.
  31. Kuyanov-Prozument K., Choi M.Y., Vilesov A.F. Spectrum and infrared intensities of OH-stretching bands of water dimmers // J. Chem. Phys. 2010. V. 132. P. 014304.
  32. Simonova A.A., Ptashnik I.V. Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 mm bands // Proc. SPIE. 2016. V. 10035. P. 100350K-1–5.
  33. Tvorogov S.D. Problema tsentrov mass v zadache o konture spektral'nykh linij I. Sushchestvovanie dlinnykh traektorij // Optika atmosf. i okeana. 2009. V. 22, N 5. P. 413–419; Тvorogov S.D. Problem of centers of mass within the problem of the contour of spectral lines. 1. Existence of long trajectories // Atmos. Ocean. Opt. 2009. V. 22, N 3. P. 257–263.
  34. Bogdanova Yu.V., Rodimova O.B. Role of diffusion in the violation of the long-wave approximation in line wings // Intern. J. Quant. Chem. 2012. V. 112, iss. 17. P. 2924–2931.