Vol. 33, issue 09, article # 11

Ignatov R. Yu., Rubinshtein K. G., Yusupov Yu. I. Numerical experiments on the forecast of ice phenomena. // Optika Atmosfery i Okeana. 2020. V. 33. No. 09. P. 735–741. DOI: 10.15372/AOO20200911 [in Russian].
Copy the reference to clipboard
Abstract:

Methods and results of numerical forecast of ice phenomena over the territory of the central Russia for winters 2003–2018 are presented. The forecast success is compared using the analysis of precipitation types and the heat balance model, where the predictions of the WRF-ARW model are used as input. Some advantages of forecasts using a heat-balanced model are shown. It is suggested to develop an integral method in the future.

Keywords:

forecast of ice, central region of Russia, WRF-ARW

References:

  1. Nastavleniya po kodam. Mezhdunarodnye kody. Volume I. 1. Dopolneniya II k Tekhnicheskomu reglamentu VMO. Part A – Bukvenno-tsifrovye kody // VMO N 306, 2019. 549 с.
  2. Hromov S.P., Mamontova L.I. Meteorologicheskij slovar'. L.: Gilrometeoizdat, 1974. 568 p.
  3. Rubinshtejn K.G., Ignatov R.Yu., Yusupov Yu.I., Titov D.E. Ispol'zovanie teplo-balansnogo metoda dlya prognozirovaniya gololedno-izmorozevyh otlozhenij na provodah vozdushnyh linij elektroperedachi // Energiya edinoj seti. 2018. N 2(37). P. 43–50.
  4. Titov D.E., Ugarov G.G., Ustinov A.A. Аnalysis of application of models to assess parameters of ice formation on overhead electric power lines // Power Tech. Eng. 2017. V. 51, N 2. P. 240–246.
  5. Zarnani A., Musilek P., Shi X., Ke X., He H., Greiner R. Learning to predict ice accretion on electric power lines // J. Eng. Appl. Artif. Intell. 2012. V. 25, N 3. P. 609–617.
  6. DeGaetano A.T., Belcher B.N., Spier P.L. Short-term ice accretion forecasts for electric utilities using the weather research and forecasting model and a modified precipitation-type algorithm // Weather Forecast. 2008. V. 23. P. 878–853.
  7. Thompson G. Using the Weather Research and Forecasting (WRF) Model to Predict Ground Structural Icing // Book of IWAIS XIII. Andematt: 2009. P. 2–10.
  8. Titov D.E., Ugarov G.G., Soshinov A.G. Monitoring the Intensity of Ice Formation on Overhead Electric Power Lines and Contact Networks // Power Tech. Eng. 2015. V. 49, N 1. P. 78–82.
  9. Shao J., Laux S.J., Trainor B.J., Pettifer R.E.W. Nowcasts of temperature and ice on overhead railway transmission wires // Meteorol. Appl. 2003. V. 10, N 2. P. 123–133.
  10. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D., Duda M.G., Huang X.-Y., Wang W.A. Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. USA: 2008. P. 520.
  11. Mansell E.R., Ziegler C.L., Bruning E.C. Simulated electrification of a small thunderstorm with two–moment bulk microphysics // J. Atmos. Sci. 2010. V. 67. P. 171–194.
  12. NCEP Products Inventory [Electronic resource]. URL: https: //www.nco.ncep.noaa.gov/pmb/products/gfs (last access: 12.01.2020).
  13. Crevier L.-P., Delage Y. METRo: A New Model for Road-Condition Forecasting in Canada // J. Appl. Meteorol. 2001. V. 40. P. 2026–2037.