Vol. 33, issue 10, article # 2

Smalikho I. N. Consideration of the wind transfer of turbulent inhomogeneities when estimating the turbulent energy dissipation rate from measurements with a conically scanning coherent Doppler lidar. Part I. Theory. // Optika Atmosfery i Okeana. 2020. V. 33. No. 10. P. 756–761. DOI: 10.15372/AOO20201002 [in Russian].
Copy the reference to clipboard
Abstract:

Using the Taylor’s hypothesis of “frozen" turbulence, the technique suggested in [Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmospheric Measurement Techniques. 2017. V. 10, N 11. P. 4191–4208] is improved. In contrast to the previously applied approach, the technique improved provides for unbiased estimates of the dissipation rate for arbitrary values of the ratio of the average wind speed to the linear speed of the conical scan. Based on the results of theoretical calculations, the conditions are determined under which it is not necessary to take into account the wind transfer of turbulent inhomogeneities when estimating the dissipation rate from measurements by conically scanning pulsed coherent Doppler lidars.

Keywords:

coherent Doppler lidar, conical scanning, wind, turbulence

References:

    1. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.

  1. Vasiljevic N., Lea G., Courtney M., Cariou J.P., Mann J., Mikkelsen T. Long-range wind scanner system // Remote Sens. 2016. V. 8, N 896. DOI: 10.3390/ rs8110896.
  2. Eberhard W.L., Cupp R.E., Healy K.R. Doppler lidar measurement of profiles of turbulence and momentum flux // J. Atmos. Ocean. Technol. 1989. V. 6. P. 809–819.
  3. Frehlich R.G., Hannon S.M., Henderson S.W. Coherent Doppler lidar measurements of wind field statistics // Bound.-Lay. Meteorol. 1998. V. 86, N 1. P. 223–256.
  4. Smalikho I., Köpp F., Rahm S. Measurement of atmospheric turbulence by 2-mm Doppler lidar // J. Atmos. Ocean. Technol. 2005. V. 22, N 11. P. 1733–1747.
  5. Frehlich R.G., Meillier Y., Jensen M.L., Balsley B., Sharman R. Measurements of boundary layer profiles in urban environment // J. Appl. Meteorol. Climatol. 2006. V. 45, N 6. P. 821–837.
  6. Banta R.M., Pichugina Y.L., Brewer W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet // J. Atmos. Sci. 2006. V. 63. P. 2700–2719.
  7. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664.
  8. Sathe A., Mann J. A review of turbulence measurements using ground-based wind lidars // Atmos. Meas. Tech. 2013. V. 6, N 11. P. 3147–3167.
  9. Sathe A., Mann J., Vasiljevic N., Lea G. A six-beam method to measure turbulence statistics using ground-based wind lidars // Atmos. Meas. Tech. 2015. V. 8, N 2. P. 729–740.
  10. Newman J.F., Klein P.M., Wharton S, Sathe A., Bonin T.A., Chilson P.B, Muschinski A. Evaluation of three lidar scanning strategies for turbulence measurements // Atmos. Meas. Tech. 2016. V. 9, N 4. P. 1993–2013.
  11. Bonin T.A., Choukulkar A., Brewer W.A., Sandberg S.P., Weickmann A.M., Pichugina Y.L., Banta R.M., Oncley S.P., Wolfe D.E. Evaluation of turbulence measurement techniques from a single Doppler lidar // Atmos. Meas. Tech. 2017. V. 10, N 8. P. 3021–3039.
  12. Wildmann N., Bodini N., Lundquist J.K., Bariteau L., Wagner J. Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign // Atmos. Meas. Tech. 2019. V. 12, N 12. P. 6401–6423.
  13. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208.
  14. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248.
  15. Smalikho I.N., Banakh V.A., Holzäpfel F., Rahm S. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar // Opt. Express. 2015. V. 23, N 19. P. A1194–A1207.
  16. Lhermitte R.M., Atlas D. Precipitation motion by pulse Doppler // Proc. of the 9th Weather Radar Conf. Kansas City, USA. 1961. P. 218–223.
  17. Lamli Dzh., Panovskij G. Struktura atmosfernoj turbulentnosti. M.: Mir, 1966. 264 p.
  18. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
  19. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Pt. 2. M.: Nauka, 1967. 720 p.
  20. Smalikho I.N., Banakh V.A., Falits A.V., Suharev A.A., Gordeev E.V. Uchet vetrovogo perenosa turbulentnyh neodnorodnostej pri otsenivanii skorosti dissipatsii turbulentnoj energii iz izmerenij konicheski skaniruyushchim kogerentnym doplerovskim lidarom. Part II. Eksperiment // Optika atmosf. i okeana. 2020. (in print)