Vol. 33, issue 11, article # 9

Odintsov S. L., Gladkikh V. A., Kamardin A. P., Nevzorova I. V. Height of the zone of intense turbulent heat exchange in the stably stratified atmospheric boundary layer. Part  2: Relation to the surface meteorological parameters. // Optika Atmosfery i Okeana. 2020. V. 33. No. 11. P. 880–889. DOI: 10.15372/AOO20201109 [in Russian].
Copy the reference to clipboard
Abstract:

Part 2 of the paper analyzes the relation of the heights of the zone of intense turbulent heat exchange and the corresponding air temperature gradients to the surface values of the wind speed and the vertical turbulent heat flux. Only the cases of temperature inversions in winter (January–February 2020) are considered. The division of inversions into two types (surface and elevated) and four forms is introduced. The statistics of the height of the layer of intense turbulent heat exchange is obtained for various versions (types and forms) of temperature inversions. It is concluded from the analysis that under conditions of temperature inversions (in the winter period) there is no direct (well pronounced) relation between the height of the layer of intense turbulent heat exchange and the surface values of the wind speed and the turbulent heat flux.

Keywords:

temperature inversion, atmospheric boundary layer, surface layer, wind speed, sodar, temperature profilometer, turbulent heat exchange, sonic anemometer/thermometer

Figures:
References:

  1. Seibert P., Beyrich F., Gryning S.E.S.E., Joffre S., Rasmussen A., Tercier P. Review and intercomparison of operational methods for the determination of the mixing height // Atmos. Environ. 2000. V. 34, N 7. P. 1001–1027. 
  2. Burlando M., Georgieva E., Ratto C.F. Parameterisation of the planetary boundary layer for diagnostic wind models // Bound.-Lay. Meteorol. 2007. V. 125, N 2. P. 389–397. 
  3. Holdsworth A.M., Monahan A.H. Turbulent collapse and recover in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget // J. Atmos. Sci. 2019. V. 76, N 5. P. 1307–1327. 
  4. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu.I., Mareev E.A. Teoreticheskie modeli vysoty pogranichnogo sloya atmosfery i turbulentnogo vovlecheniya na ego verhnej granitse // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 1. P. 150–160.
  5. Yushkov V.P., Kurbatova M.M., Varentsov M.I., Lezina E.A., Kurbatov G.A., Miller E.A., Repina I.A., Artamonov A.Yu., Kallistratova M.A. Modelirovanie gorodskogo ostrova tepla v period ekstremal'nyh morozov v Moscow v January 2017 year // Izv. RAN. Fiz. atmosf. i okean. 2019. V. 55, N 5. P. 13–31. 
  6. Kurbatskij A.F., Kurbatskaya L.I. Issledovanie ustojchivogo pogranichnogo sloya c ispol'zovaniem yavnoj algebraicheskoj modeli turbulentnosti // Teplofizika i aeromekhanika. 2019. V. 26, N 3. P. 363–380. 
  7. Kurbatskaya L.I., Kurbatskij A.F. Vychislitel'no-effektivnaya model' turbulentnosti dlya modelirovaniya rasseyaniya zagryaznenij // Optika atmosf. i okeana. 2017. V. 30, N 6. P. 524–528. 
  8. Argentini S., Mastrantonio G., Lena F. Case studies of the wintertime convective boundary-layer structure in the urban area of Milan, Italy // Bound.-Lay. Meteorol. 1999. V. 93. N 2. P. 253–267. 
  9. Pietroni I., Argentini S., Petenko I., Sozzi R. Measurements and parametrizations of the atmospheric boundary-layer height at Dome C, Antarctica // Bound.-Lay. Meteorol. 2012. V. 143, N 1. P. 189–206. 
  10. Piringer M., Joffre S., Baklanov A., Cristen A., Deserti M., De Ridder K., Emeis S., Mestayer P., Tombrou M., Middleton D., Baumann-Stanzer K., Dandou A., Karppinen A., Burzynski J. The surface energy balance and the mixing height in urban areas – activities and recommendations of COST-Action 715 // Bound.-Lay. Meteorol. 2007. V. 124, N 1. P. 3–24. 
  11. Sgouros G., Helmis C.G., Degleris J. Development and application of an algorithm for the estimation of mixing height with the use of a SODAR-RASS remote sensing system // Int. J. Remote Sens. 2011. V. 32, N 22. P. 7297–7313. 
  12. Kryza M., Drzeniecka-Osiadacz A., Werner M., Netzel P., Dore A.J. Comparison of the WRF and sodar derived planetary boundary layer height // Int. J. Environ. Pollut. 2015. V. 58, N 1–2. P. 3–14. 
  13. Lokoshchenko M.A. Dinamika termicheskoj turbulentnosti v nizhnej atmosfere Moskvy po dannym sodarnogo zondirovaniya // Meteorol. i gidrol. 2006. N 2. P. 35–46. 
  14. Kamardin A.P., Kohanenko G.P., Nevzorova I.V., Penner I.E. Sovmestnye issledovaniya struktury pogranichnogo sloya atmosfery na osnove lidarnyh i sodarnyh izmerenij // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 534–537. 
  15. Li H., Yang Y., Hu X.M., Huang Z., Wang G., Zhang B., Zhang T. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data // J. Geophys. Res. Atmos. 2017. V. 122, N 8. P. 4578–4593. 
  16. Brooks I.M. Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles // J. Atmos. Ocean. Tech. 2003. V. 20, Iss. 8. P. 1092–1105. 
  17. Tombrou M., Founda D., Boucouvala D. Nocturnal bounary layer height prediction from surface routine meteorological data // Meteorol. Atmos. Phys. 1998. V. 68, N 3–4. P. 177–186. 
  18. Georgoulias A.K., Papanastasiou D.K., Melas D., Amiridis V., Alexandri G. Statistical analysis of boundary layer heights in a suburban environment // Meteorol. Atmos. Phys. 2009. V. 104, N 1–2. P. 103–111. 
  19. Odintsov S.L., Gladkih V.A., Kamardin A.P., Nevzorova I.V. Vysota oblasti intensivnogo turbulentnogo teploobmena v ustojchivo stratifitsirovannom pogranichnom sloe atmosfery. Part 1: Metodika otsenok i statistika // Optika atmosf. i okeana. 2020. V. 33. N 10. P. 782-790. 
  20. Kamardin A.P., Gladkih V.A., Odintsov S.L., Fedorov V.A. Meteorologicheskij akusticheskij doplerovskij lokator (sodar) «VOLNA-4M-ST» // Pribory. 2017. N 4. P. 37–44. 
  21. Kadygrov E.N., Kuznetsova I.N. Metodicheskie rekomendatsii po ispol'zovaniyu dannyh distantsionnyh izmerenij profilej temperatury v pogranichnom sloe mikrovolnovymi profilemerami: teoriya i praktika. Dolgoprudnyj: Fizmatkniga, 2015. 171 p. 
  22. Kadygrov E.N. Mikrovolnovaya radiometriya atmosfernogo pogranichnogo sloya – metod, apparatura, rezul'taty izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704. 
  23. Gladkih V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25. 
  24. Gladkih V.A., Odintsov S.L. Turbulentnyj potok tepla v prizemnom sloe atmosfery i ego vliyanie na vneshnij masshtab turbulentnosti // Izv. vuzov. Fizika. 2017. N 6. P. 128–134. 
  25. Kamardin A.P., Gladkikh V.A., Mamyshev V.P., Nevzorova I.V., Odintsov S.L., Trofimov I.V. Estimation of the height of intense turbulent heat exchange layer in the stably stratified atmospheric boundary layer // Proc. SPIE. 2020 (in print).