Vol. 36, issue 03, article # 5

Akperov M. G., Eliseev A. V. Wind energy potential of the high latitudes of the Northern Hemisphere under modern climatic changes
 
. // Optika Atmosfery i Okeana. 2023. V. 36. No. 03. P. 196–199. DOI: 10.15372/AOO20230305 [in Russian].

Copy the reference to clipboard
Abstract:

Quantitative estimates of changes in wind energy resources in the high latitudes of the Northern Hemisphere are obtained using ERA5 reanalysis data for 1979–2021. The wind energy potential (WEP) was estimated during the analysis. According to the ERA5 reanalysis data, a marked increase in the WEP over the Greenland, Norwegian, Barents, Kara, and Chukchi Seas, as well as over the European territory of Russia in winter, over the Kara and Norwegian Seas in spring, and a general increase in WEP along the Arctic coast, in particular over its Russian sector in summer and autumn, are noted under the current climate regime. The noted changes in WEP quite well correlate with the retreat of sea ice in the Arctic, as well as with the leaf area index, which characterizes the roughness of the underlying surface in the high latitudes of the Northern Hemisphere. The increase in the proportion of the year when wind generators are capable to operate over the Russian Arctic makes the region quite promising for the use and development of wind power in the context of the climate change.
 

Keywords:

wind energy resources, sea ice, leaf area index, Arctic, climate change, reanalysis

Figures:
References:

  1. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. M.: Rosgidromet, 2014. 1535 p.
  2. Alekseev G.V., Radionov V.F., Aleksandrov E.I., Ivanov N.E., Kharlanenkova N.E. Izmeneniya klimata Arktiki pri global'nom poteplenii // Problemy Arktiki i Antarktiki. 2015. N 1(103). P. 32–41.
  3. Mokhov I.I., Parfenova M.R. Svyaz' protyazhennosti antarkticheskikh i arkticheskikh morskikh l'dov s temperaturnymi izmeneniyami v 1979–2020 years // Dokl. RAN. Nauki o Zemle. 2021. V. 496, N 1. P. 71–77.
  4. Previdi M., Smith K.L., Polvani L.M. Arctic amplification of climate change: A review of underlying mechanisms // Environ. Res. Lett. 2021. V. 16, N 9. DOI: 10.1088/1748-9326/ac1c29.
  5. Pustovalov K.N., Kharyutkina E.V., Korolkov V.A., Nagorskiy P.M. Izmenchivost' resursov solnechnoi i vetrovoi energii v rossiiskom sektore Arktiki // Optika atmosf. i okeana. 2019. V. 32, N 11. P. 908–914; Pustovalov K.N., Kharyutkina E.V., Korolkov V.A., Nagorskiy P.M. Variations in resources of solar and wind energy in the Russian sector of the Arctic // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 282–288.
  6. Kislov A.V., Surkova G.V. Vliyanie global'nogo potepleniya na klimaticheskie resursy Rossii // Ekonomika. Nalogi. Pravo. 2021. V. 14, N 4. P. 6–14.
  7. Mokhov I.I., Mokhov O.I., Petukhov V.K., Khairullin R.R. Vliyanie global'nykh klimaticheskikh izmenenii na vikhrevuyu aktivnost' v atmosfere // Izv. RAN. Fiz. atmosf. i okeana. 1992. V. 28, N 1. P. 11–26.
  8. Akperov M., Rinke A., Mokhov I.I., Matthes H., Semenov V.A., Adakudlu M., Cassano J., Christensen J.H., Dembitskaya M.A., Dethloff K., Fettweis X., Glisan J., Gutjahr O., Heinemann G., Koenigk T., Koldunov N.V., Laprise R., Mottram R., Nikiéma O., Scinocca J.F., Sein D., Sobolowski S., Winger K., Zhang W. Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX) // J. Geophys. Res.: Atmos. 2018. DOI: 10.1002/2017JD027703.
  9. Akperov M., Rinke A., Mokhov I.I., Semenov V.A., Parfenova M.R., Matthes H., Adakudlu M., Boberg F., Christensen J.H., Dembitskaya M.A., Dethloff K., Fettweis X., Gutjahr O., Heinemann G., Koenigk T., Koldunov N.V., Laprise R., Mottram R., Nikiéma O., Sein D., Sobolowski S., Winger K., Zhang W. Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX) // Glob. Planet. Change. 2019. V. 182. DOI: 10.1016/j.gloplacha.2019.103005.
  10. Khon V., Mokhov I.I., Pogarskiy F., Babanin A., Dethloff K., Rinke A., Matthes H. Wave heights in the 21st century Arctic Ocean simulated with a regional climate model // Geophys. Res. Lett. 2014. V. 41, N 8. P. 2956–2961. DOI: 10.1002/2014GL059847.
  11. Intensivnye atmosfernye vikhri i ikh dinamika / pod red. I.I. Mokhova, M.V. Kurganskogo, O.G. Chkhetiani. M.: GEOS, 2018. 482 p.
  12. Mokhov I.I., Akperov M.G. Vertikal'nyi temperaturnyi gradient v troposfere i ego svyaz' s pripoverkhnostnoi temperaturoi po dannym reanaliza // Izv. RAH. Fiz. atmocf. i okeana. 2006. V. 42, N 4. P. 467–475.
  13. Pisarev A.E. Ispol'zovanie vetroenergetiki v Arktike // Arktika: innovatsionnye tekhnologii, kadry, turizm. 2020. N 1. P. 441–444.
  14. Lyzhin D.N. Vetroenergetika: vozmozhnosti dlya Arktiki // Arktika 2035: aktual'nye voprosy, problemy, resheniya. 2021. N 1. P. 64–68. DOI: 10.51823/74670_2021_1_64.
  15. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.
  16. Nikolaev V.G. Natsional'nyi Kadastr vetroenergeticheskikh resursov Rossii i metodicheskie osnovy ikh opredeleniya / V.G. Nikolaev, S.V. Ganaga, Yu.I. Kudryashov; Nauchno-informatsionnyi tsentr «Atmograf», TSentral'nyi aerogidrodinamicheskii institut im. prof. N.E. Zhukovskogo i OAO RAO «EES Rossii». M.: Atmograf, 2008. 581 p.
  17. Carvalho D., Rocha A., Costoya X., deCastro M., Gómez-Gesteira M. Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6 // Renew. Sust. Energ. Rev.  2021. V. 151. P. 111594 DOI: 10.1016/j.rser.2021.111594.
  18. Ramon J., Lledó L., Torralba V., Soret A., Doblas-Reyes F.J. What global reanalysis best represents near-surface winds? // Q. J. R. Meteorol. Soc. 2019. V. 145, N 724. P. 3236–3251. DOI: 10.1002/qj.3616.
  19. Minola L., Zhang F., Azorin-Molina C., Pirooz A.A.S., Flay R.G.J., Hersbach H., Chen D. Near-surface mean and gust wind speeds in ERA5 across Sweden: Towards an improved gust parametrization // Clim. Dyn. 2020. V. 55, N 3. P. 887–907. DOI: 10.1007/s00382-020-05302-6.
  20. Akperov M., Semenov V.A., Mokhov I.I., Dorn W., Rinke A. Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations // Environ. Res. Lett. 2020. V. 15, N 2. P. 24009. DOI: 10.1088/1748-9326/ab6399.
  21. Jakobson L., Vihma T., Jakobson E. Relationships between sea ice concentration and wind speed over the Arctic Ocean during 1979–2015 // J. Clim. 2019. V. 32, N 22. P. 7783–7796. DOI: 10.1175/JCLI-D-19-0271.1.
  22. Akperov M., Zhang W., Miller P.A., Mokhov I.I., Semenov V.A., Matthes H., Smith B., Rinke A. Responses of Arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model // Environ. Res. Lett. 2021. DOI: 10.1088/1748-9326/ac0566.
  23. Eliseev A.V. Global'nyi tsikl CO2: osnovnye protsessy i vzaimodeistvie s klimatom // Fundament. i prikl. klimatol. 2017. V. 4. P. 9–31.
  24. Canadell J.G., Monteiro P.M.S., Costa M.H., Cotrim da Cunha L., Cox P.M., Eliseev A.V., Henson S., Ishii M., Jaccard S., Koven C., Lohila A., Patra P.K., Piao S., Rogelj J., Syampungani S., Zaehle S., Zickfeld K. Global carbon and other biogeochemical cycles and feedbacks // Clim. Change. 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelek O., Yu R., Zhou B. Cambridge: Cambridge University Press, 2021. P. 673–816. DOI: 10.1017/9781009157896.007
  25. Franks P.J., Adams M.A., Amthor J.S., Barbour M.M., Berry J.A., Ellsworth D.S., Farquhar G.D., Ghannoum O., Lloyd J., McDowell N., Norby R.J., Tissue D.T., von Caemmerer S. Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century // New Phytologist. 2013. V. 197, N 4. P. 1077–1094.
  26. Enquist B., Brown J., West G. Allometric scaling of plant energetics and population density // Nature. 1998. V. 395. P. 163–166.