Based on the analysis of high-resolution FTIR spectra recorded at the atmospheric monitoring station of St. Petersburg State University during 2009–2022, a possibility of deriving NO2 tropospheric column from ground-based measurements of direct solar radiation in the mid-IR range is studied. The best agreement (correlation coefficient r = 0.68) with simultaneous DOAS measurements of tropospheric NO2 column at the same monitoring station is demonstrated by a retrieval strategy based on the use of the spectral range 2914.30–2914.85 cm-1 in combination with Tikhonov–Phillips regularization. It is shown that FTIR measurements make it possible to detect high levels of tropospheric NO2 at the SPbU monitoring station. Our results can be used at the FTIR stations of the NDACC network for significant expansion of the geography of tropospheric NO2 monitoring.
nitrogen dioxide, ground-based FTIR measurements, ground-based DOAS measurements, tropospheric column, inverse problems of atmospheric optics
1. Ekologicheskiy portal Sankt-Peterburga. Komitet po prirodopol'zovaniyu, okhrane okruzhayushchey sredy i obespecheniyu ekologicheskoy bezopasnosti. Sostoyanie okruzhayushchey sredy. Atmosfernyy vozdukh. URL: https://www.infoeco.ru/index.php?id=53.
2. Molina J.M., Molina L.T. Megacities and atmospheric pollution // J. Air Waste Manag. Associat. 2004. V. 54, N 6. P. 644–680. DOI: 10.1080/10473289.2004.10470936.
3. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. New York: John Wiley & Sons, 2006. P. 1232.
4. Ionov D.V., Poberovskiy A.V., Ionov V.V. Distantsionnye spektroskopicheskie izmereniya soderzhaniya NO2 v gorodskom vozdukhe (na primere Sankt-Peterburga) // Zhurn. prikladnoy spektroskopii. 2017. V. 84, N 1. P. 127–131.
5. Ionov D.V., Kshevetskaya M.A., Timofeev Yu.M., Poberovskiy A.V. Soderzhanie NO2 v stratosfere po dannym nazemnykh izmereniy solnechnogo IK-izlucheniya // Izv. RAN. Fiz. atmosf. i okeana. 2013. V. 49, N 5. P. 565–575.
6. Platt U., Stutz J. Differential Optical Absorption Spectroscopy (DOAS), Principles and Applications. Berlin–Heidelberg: Springer, 2008. P. 598. DOI: 10.1007/978-3-540-75776-4.
7. Makarova M.V., Kirner O., Timofeev Yu.M., Poberovskiy A.V., Imkhasin Kh.Kh., Osipov S.I., Makarov B.K. Analiz izmenchivosti atmosfernogo metana vblizi Sankt-Peterburga po dannym nazemnykh izmereniy i modelirovaniya // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 2. P. 201–209. DOI: 10.7868/S0002351515010083.
8. Vigouroux C., Bauer Aquino C.A., Bauwens M., Becker C., Blumenstock T., De Mazière M., García O., Grutter M., Guarin C., Hannigan J., Hase F., Jones N., Kivi R., Koshelev D., Langerock B., Lutsch E., Makarova M., Metzger J.-M., Müller J.-F., Notholt J., Ortega I., Palm M., Paton-Walsh C., Poberovskii A., Rettinger M., Robinson J., Smale D., Stavrakou T., Stremme W., Strong K., Sussmann R., Té Y., Toon G. NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances // Atmos. Meas. Tech. 2018. V. 11. P. 5049–5073. DOI: 10.5194/amt-11-5049-2018.
9. Lutsch E., Strong K., Jones D.B.A., Blumenstock T., Conway S., Fisher J.A., Hannigan J.W., Hase F., Kasai Y., Mahieu E., Makarova M., Morino I., Nagahama T., Notholt J., Ortega I., Palm M., Poberovskii A.V., Sussmann R., Warneke T. Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-Transform infrared spectrometers and GEOS-Chem // Atmos. Chem. Phys. 2020. V. 20. P. 12813–12851. DOI: 10.5194/acp-20-12813-2020.
10. IRWG NDACC. URL: https://www2.acom.ucar.edu/ irwg (data obrashcheniya: 16.08.2023).
11. Poberovskii A.V. Nazemnye izmereniya IK-spektrov solnechnogo izlucheniya s vysokim spektral'nym razresheniem // Optika atmosf. i okeana. 2010. V. 23, N 1. P. 56–58; Poberovskii A.V. High-resolution ground measurements of the IR spectra of solar radiation // Atmos. Ocean. Opt. 2010. V. 23, N 2. P. 161–164.
12. Timofeev Yu.M., Vasil'ev A.V. Teoreticheskie osnovy atmosfernoy optiki. SPb.: Nauka, 2003. 474 p.
13. García O.E., Schneider M., Sepúlveda E., Hase F., Blumenstock T., Cuevas E., Ramos R., Gross J., Barthlott S., Röhling A.N., Sanromá E., González Y., Gómez-Peláez Á.J., Navarro-Comas M., Puentedura O., Yela M., Redondas A., Carreño V., León-Luis S.F., Reyes E., García R.D., Rivas P.P., Romero-Campos P.M., Torres C., Prats N., Hernández M., López C. Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory – overview and long-term comparison to other techniques // Atmos. Chem. Phys. 2021. V. 21. P. 15519–15554. DOI: 10.5194/acp-21-15519-2021.
14. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69. DOI: 10.1016/j.jqsrt.2017.06.038.
15. Toon G.C., Blavier J.F., Keeyoon Sung, Rothman L.S., Gordon I.E. HITRAN spectroscopy evaluation using solar occultation FTIR spectra // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 182. P. 324–336. DOI: 10.1016/j.jqsrt.2016.05.021.
16. S5P Routine Operations Consolidated Validation Report. Issue 18.01.00. 3 April 2023. P. 196. URL: https://mpc-vdaf.tropomi.eu/ProjectDir/report//pdf/S5P-MPC-IASB-ROCVR-18.01.00-FINAL.pdf.
17. NDACC, NCEP Data Access. URL: https://www-air.larc.nasa.gov/missions/ndacc/data.html? NCEP=ncep-list.
18. Rodgers C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific Publishing, 2000. V. 2. 256 р. DOI: 10.1142/3171.
19. Garcia R.R., Marsh D.R., Kinnison D.E., Boville B.A., Sassi F. Simulation of secular trends in the middle atmosphere, 1950–2003 // J. Geophys. Res. 2007. V. 112. P. D09301. DOI: 10.1029/2006JD007485.
20. Tikhonov A.N. O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii // Dokl. AN SSSR. 1963. V. 151, N 3. P. 501–504.
21. Vigouroux C., Stavrakou T., Whaley C., Dils B., Duflot V., Hermans C., Kumps N., Metzger J.-M., Scolas F., Vanhaelewyn G., Müller J.-F., Jones D.B.A., Li Q., De Mazière M. FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH) at Reunion Island (21° S, 55° E) and comparisons with model data // Atmos. Chem. Phys. 2012. V. 12. P. 10367–10385. DOI: 10.5194/acp-12-10367-2012.
22. Hase F., Hannigan J.W., Coffey M.T., Goldman A., Höpfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements // J. Quant. Spectros. Radiat. Transfer. 2004. V. 87. P. 25–52.
23. Chesnokova T.Yu., Makarova M.V., Chentsov A.V., Kostsov V.S., Poberovskii A.V., Zakharov V.I., Rokotyan N.V. Estimation of the impact of differences in the CH4 absorption line parameters on the accuracy of methane atmospheric total column retrievals from ground-based FTIR spectra // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 254. P. 107187. DOI: 10.1016/j.jqsrt.2020.107187.
24. Steck T. Methods for determining regularization for atmospheric retrieval problems // Appl. Opt. 2002. V. 41, N 9. P. 1788–1797. DOI: 10.1364/ao.41.001788.
25. Sussmann R., Forster F., Rettinger M., Jones N. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network // Atmos. Meas. Tech. 2011. V. 4. P. 1943–1964. DOI: 10.5194/amt-4-1943-2011.
26. Ionov D., Poberovskii A. Quantification of NOx emission from St. Petersburg (Russia) using mobile DOAS measurements around entire city // Int. J. Remote Sens. 2015. V. 36, N 9. P. 2486–2502. DOI: 10.1080/01431161.2015.1042123.