Current issue

Content of issue 01, volume 38, 2025

1. The centenary of the birth of Vladimir Evseevich Zuev: contribution to science and heritage for future generations. P. 5–6
2. Tarasenkov M. V., Poznaharev E. S., Fedosov A. V., Kudryavtsev A. N., Belov V. V. Estimation of the capabilities of non-line-of-sight optical communications with UAVs through “water atmosphere” interface. P. 7–14
Bibliographic reference:
Tarasenkov M. V., Poznaharev E. S., Fedosov A. V., Kudryavtsev A. N., Belov V. V. Estimation of the capabilities of non-line-of-sight optical communications with UAVs through “water atmosphere” interface. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 7–14. DOI: 10.15372/AOO20250101 [in Russian].
Copy the reference to clipboard
3. Musikhin I. D., Kapustin V. V., Movchan A. K., Poznaharev E. S., Kuryachy M. I., Tislenko A. A., Zabuga S. A. Influence of inhomogeneous optical radiation propagation media on the accuracy of space depth mapping by multi-zone active-pulse television measuring systems. P. 15–23
Bibliographic reference:
Musikhin I. D., Kapustin V. V., Movchan A. K., Poznaharev E. S., Kuryachy M. I., Tislenko A. A., Zabuga S. A. Influence of inhomogeneous optical radiation propagation media on the accuracy of space depth mapping by multi-zone active-pulse television measuring systems. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 15–23. DOI: 10.15372/AOO20250102 [in Russian].
Copy the reference to clipboard
4. Yushkov V. P. The relation of density and temperature fluctuations to the kinetic energy of turbulence in the atmospheric boundary layer. P. 23–31
Bibliographic reference:
Yushkov V. P. The relation of density and temperature fluctuations to the kinetic energy of turbulence in the atmospheric boundary layer. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 23–31. DOI: 10.15372/AOO20250103 [in Russian].
Copy the reference to clipboard
5. Gorchakov G. I., Karpov A. V., Gushchin R. A., Dazenko O. I., Semutnikova E. G. Black carbon, brown carbon, and selective smoke aerosol absorption during large-scale wildfires in Alaska in 2019 and Canada in 2023. P. 32–38
Bibliographic reference:
Gorchakov G. I., Karpov A. V., Gushchin R. A., Dazenko O. I., Semutnikova E. G. Black carbon, brown carbon, and selective smoke aerosol absorption during large-scale wildfires in Alaska in 2019 and Canada in 2023. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 32–38. DOI: 10.15372/AOO20250104 [in Russian].
Copy the reference to clipboard
6. Belan B. D., Dudorova N. V., Kotelnikov S. N. Ground-level ozone as a factor of increase in community-acquired pneumonia rate in Moscow in warm seasons. P. 39–46
Bibliographic reference:
Belan B. D., Dudorova N. V., Kotelnikov S. N. Ground-level ozone as a factor of increase in community-acquired pneumonia rate in Moscow in warm seasons. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 39–46. DOI: 10.15372/AOO20250105 [in Russian].
Copy the reference to clipboard
7. Kablukova E. G., Oshlakov V. G., Prigarin S. M. Simulation of polarized signal of laser navigation system by Monte Carlo method. P. 47–55
Bibliographic reference:
Kablukova E. G., Oshlakov V. G., Prigarin S. M. Simulation of polarized signal of laser navigation system by Monte Carlo method. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 47–55. DOI: 10.15372/AOO20250106 [in Russian].
Copy the reference to clipboard
8. Korshunov V. A. Two-component optical model of stratospheric aerosol and its application to interpretation of lidar measurements. P. 56–63
Bibliographic reference:
Korshunov V. A. Two-component optical model of stratospheric aerosol and its application to interpretation of lidar measurements. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 56–63. DOI: 10.15372/AOO20250107 [in Russian].
Copy the reference to clipboard
9. Marakasov D. A., Sukharev A. A., Tsvyk R. Sh. Laser transillumination study of supersonic jets. P. 64–71
Bibliographic reference:
Marakasov D. A., Sukharev A. A., Tsvyk R. Sh. Laser transillumination study of supersonic jets. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 64–71. DOI: 10.15372/AOO20250108 [in Russian].
Copy the reference to clipboard
10. Romanovskii O. A., Yakovlev S. V., Sadovnikov S. A., Nevzorov A. A., Nevzorov A. V., Kharchenko O. V., Kravtsova N. S., Kistenev Yu. V. Ground-based stationary differential absorption lidars for monitoring greenhouse gases in the atmosphere. P. 72–84
Bibliographic reference:
Romanovskii O. A., Yakovlev S. V., Sadovnikov S. A., Nevzorov A. A., Nevzorov A. V., Kharchenko O. V., Kravtsova N. S., Kistenev Yu. V. Ground-based stationary differential absorption lidars for monitoring greenhouse gases in the atmosphere. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 72–84. DOI: 10.15372/AOO20250109 [in Russian].
Copy the reference to clipboard