Vol. 34, issue 01, article # 1

Kanev F. Yu., Aksenov V. P., Veretekhin I. D. Precision of algorithms for detecting optical vortices. // Optika Atmosfery i Okeana. 2021. V. 34. No. 01. P. 5–16. DOI: 10.15372/AOO20210101 [in Russian].
Copy the reference to clipboard
Abstract:

Application of four algorithms developed for detecting optical vortices in problems of singular optics is considered. Structure of numerical models and design of corresponding computational application are described; input parameters required for the model implementation are listed. Special attention is devoted to precision of vortex coordinates and number. Depending on these characteristic, suggestions are made for possible application of the algorithms: two of them can only be used in theoretical studies, while other two can be applied in real laboratory experiments.

Keywords:

optical vortices, singular points of wavefront, local tilts of wavefront, Shack–Hartmann sensor

References:

1. Ng J., Lin Z., Chan C.T. Theory of optical trapping by an optical vortex beam // Phys. Rev. Lett. 2010. V. 104. P. 103601-1–4. DOI: 10.1103/PhysRevLett.104. 103601.
2. Gahagan K.T., Swartzlander G.A.Jr. Optical vortex trapping of particles // Opt. Lett. 1996. V. 21, N 11. P. 827–829.
3. Gahagan K.T., Swartzlander G.A.Jr. Trapping of low-index microparticles in an optical vortex // J. Opt. Soc. Am. B. 1998. V. 15, N 2. P. 524–534.
4. Cheng-Shan Guo, Ya-Nan Yu, Zhengping Hong. Optical sorting using an array of optical vortices with fractional topological charge // Opt. Commun. 2010. V. 283. P. 1889–1893. DOI: 10.1016/j.optcom.2009.12.063.
5. Wu J., Li H., Li Y. Encoding information as orbital angular momentum states of light for wireless optical communications // Opt. Eng. 2007. V. 46, N 1. P. 019701-1–019701-5.
6. Gibson G., Courtial J., Padgett M.J., Vasnetsov M., Pas’ko V., Barnett S.M., Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum // Opt. Express. 2004. V. 12, N 22. P. 5448–5456.
7. Popiołek-Masajada A., Masajada J., Kurzynowski P. Analytical model of the optical vortex scanning microscope with a simple phase object // Photonics. 2017. V. 4, N 38. P. 1–14. DOI: 10.3390/photonics4020038.
8. Vadnjal A.L., Etchepareborda P., Federico A., Kaufmann G.H. Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images // Appl. Opt. 2013. V. 52, N 9. P. 1805–1813.
9. Passos M.H.M., Lemos M.R., Almeida S.R., Baltha­zar W.F., Da Silva L., Huguenin J.A.O. Speckle patterns produced by an optical vortex and its application to surface roughness measurements // Appl. Opt. 2017. V. 56, N 2. P. 330–335.
10. Wang W., Qiao Y., Ishijima R., Yokozeki T., Hon­da D., Matsuda A., Hanson S.G., Takeda M. Constellation of phase singularities in a specklelike pattern for optical vortex metrology applied to biological kinematic analysis // Opt. Express. 2008. V. 16, N 18. P. 13908–13917.
11. Li X., Tai Y., Zhang L., Li H., Li L. Characterization of dynamic random process using optical vortex metrology // Appl. Phys. B. 2014. V. 116. P. 901–909. DOI: 10.1007/s00340-014-5776-3.
12. Patorski K., Pokorski K. Examination of singular scalar light fields using wavelet processing of fork fringes // Appl. Opt. 2011. V. 50, N 5. P. 773–781.
13. Huang H., Luo J., Matsui Y., Toyoda H., Inoue T. Eight-connected contour method for accurate position detection of optical vortices using Shack–Hartmann wavefront sensor // Opt. Eng. 2015. V. 54, N 11. P. 111302-1–111302-7. DOI: 10.1117/1.OE.54.11.111302.
14. Chen M., Roux F.S. Dipole influence on Shack–Hart­mann vortex detection in scintillated beams // J. Opt. Soc. Am. A. 2008. V. 25, N 5. P. 1084–1090.
15. Fried D.L. Branch point problem in adaptive optics // J. Opt. Soc. Am. A . 1998. V. 15, N. 10. P. 2759–2767.
16. Sztul H.I. and Alfano R.R. Double-slit interference with Laguerre–Gaussian Beams // Opt. Lett. 2006. V. 31, N. 7. P. 999–1001.
17. Khajavi B., Ureta R.G., and Galvez E.J. Determining vortex-beam superpositions by shear interferometry // Photonics. 2018. V. 5, N 16. P. 1–12.
18. Oberg R.Dzh. Tekhnologiya COM+. Osnovy i programmirovanie: M.: Vil'yams, 2000. 480 p.
19. Trel'sen E. Model' COM i primenenie ATL 3.0. SPb.: BHV, 2000. 928 p.
20. Indebetouw G. Optical vortices their propagation // J. Modern Opt. 1993. V. 40, N 1. P. 73–87.
21. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 212 p.
22. Kandidov V.P., Chesnokov S.S., Shlenov S.A. Diskretnoe preobrazovanie Fur'e. M.: Izd-vo fizicheskogo fakul'teta MGU, 2019. 88 p.
23. Angelsky O.V., Maksimyak A.P., Maksimyak P.P., Hanson S.G. Spatial behaviour of singularities in fractal- and gaussian speckle fields // Open Opt. J. 2009. V. 3. P. 29–43.
24. Nye J.F. Natural focusing and fine structure of light. Caustics and wave dislocations. Bristol and Philadelphia: Institute of Physics Publishing 1999. 328 p.
25. Chen M., Roux F.S., Olivier J.C. Detection of phase singularities with a Shack–Hartmann wavefront sensor // J. Opt. Soc. Am. A. 2007. V. 24, N 7. P. 1994–2002.
26. Kanev F.Yu., Aksenov V.P., Veretekhin I.D. Registratsiya opticheskih vihrej datchikom Sheka–Gartmana // Vestn. RFFI. 2018. N 4. P. 8–10.
27. White A.G., Smith C.P., Heckenberg N.R., Rubinsztein-Dunlop H., McDuff R., Weiss C.O., Tamm C. Interferometric Measurements of phase singularities in the output of a visible laser // J. Modern Opt. 1991. V. 38, N 12. P. 2531–2541.
28. Denisenko V.G., Minovich A., Desyatnikov A.S., Krolikowski W., Soskin M.S., Kivshar Y.S. Mapping phases of singular scalar light fields // Opt. Lett. 2008. V. 33, N 1. P. 89–91.
29. Kanev F.Yu., Aksenov V.P., Starikov F.A., Dolgopolov Yu.V., Kopalkin A.V., Veretekhin I.D. Algoritm opredeleniya topologicheskih zaryadov i chisla opticheskih vihrej po vetvleniyu polos interferentsionnoj kartiny // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 620–627.
 

Back