Content of issue 11, volume 34, 2021

1. Apeksimov D. V., Bаbushkin P. A., Geints Yu. E., Zemlyanov A. A., Matvienko G. G., Oshlakov V. K., Petrov A. V., Khoroshaeva E. E. Regularities of propagation of amplitude-modulated powerful femtosecond laser radiation in air. P. 837–841
Bibliographic reference:
Apeksimov D. V., Bаbushkin P. A., Geints Yu. E., Zemlyanov A. A., Matvienko G. G., Oshlakov V. K., Petrov A. V., Khoroshaeva E. E. Regularities of propagation of amplitude-modulated powerful femtosecond laser radiation in air. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 837–841. DOI: 10.15372/AOO20211101 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Apeksimov D.V., Babushkin P.A., Geints Yu. E., Zemlyanov A. A., Matvienko G. G., Oshlakov V. K., Petrov A.V., Khoroshaeva E.E. Features of Propagation of Amplitude-Modulated High-Power Femtosecond Laser Radiation in Air // Atmospheric and Oceanic Optics, 2022, V. 35. No. 02. pp. 97–102.
Copy the reference to clipboard    Open the english version
2. Ionov D. V., Privalov V. I. The differential spectroscopy technique DOAS in the problem of determining the total ozone content from measurements of ground-based UV spectrometer UFOS. P. 842–848
Bibliographic reference:
Ionov D. V., Privalov V. I. The differential spectroscopy technique DOAS in the problem of determining the total ozone content from measurements of ground-based UV spectrometer UFOS. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 842–848. DOI: 10.15372/AOO20211102 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Ionov D.V. and Privalov V.I. The Differential Spectroscopy Technique DOAS in the Problem of Determining the Total Ozone Content from Measurements of Ground-Based UV Spectrometer UFOS // Atmospheric and Oceanic Optics, 2022, V. 35. No. 01. pp. 1–7.
Copy the reference to clipboard    Open the english version
3. Marinina A. A., Borkov Yu. G., Petrova T. M., Solodov A. M., Solodov A. A., Perevalov V. I. Carbon dioxide absorption spectrum in the 4350–4550 cm-1 region. P. 849–855
Bibliographic reference:
Marinina A. A., Borkov Yu. G., Petrova T. M., Solodov A. M., Solodov A. A., Perevalov V. I. Carbon dioxide absorption spectrum in the 4350–4550 cm-1 region. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 849–855. DOI: 10.15372/AOO20211103 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Marinina A.A., Borkov Yu.G., Petrova T.M., Solodov A.M., Solodov A.A. and Perevalov V.I. Absorption Spectrum of Carbon Dioxide in the 4350–4550 cm–1 Region // Atmospheric and Oceanic Optics, 2022, V. 35. No. 01. pp. 8–13.
Copy the reference to clipboard    Open the english version
4. Klimkin A. V., Kokhanenko G. P., Kuraeva T. E., Ponomarev Yu. N., Ptashnik I. V. Consideration of selective and nonselective absorption by water vapor and ozone when sounding atmospheric organic aerosol with a CO2 laser based IR lidar. P. 856–859
Bibliographic reference:
Klimkin A. V., Kokhanenko G. P., Kuraeva T. E., Ponomarev Yu. N., Ptashnik I. V. Consideration of selective and nonselective absorption by water vapor and ozone when sounding atmospheric organic aerosol with a CO2 laser based IR lidar. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 856–859. DOI: 10.15372/AOO20211104 [in Russian].
Copy the reference to clipboard
5. Protasevich A. E., Nikitin A. V. The kinetic energy operator of linear symmetric molecules of A2B2 type in polyspherical orthogonal coordinates
 
. P. 860–864
Bibliographic reference:
Protasevich A. E., Nikitin A. V. The kinetic energy operator of linear symmetric molecules of A2B2 type in polyspherical orthogonal coordinates
 . // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 860–864. DOI: 10.15372/AOO20211105 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Protasevich A.E. and Nikitin A.V. Kinetic Energy Operator of Linear Symmetric Molecules of the A2B2 Type in Polyspherical Orthogonal Coordinates Region // Atmospheric and Oceanic Optics, 2022, V. 35. No. 01. pp. 14–18.
Copy the reference to clipboard    Open the english version
6. Fedorov V. A. Spectral contributions from sections of the power-law structure function of stationary random processes. P. 865–873
Bibliographic reference:
Fedorov V. A. Spectral contributions from sections of the power-law structure function of stationary random processes. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 865–873. DOI: 10.15372/AOO20211106 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Fedorov V.A. Spectral Contributions from Segments of the Power-Law Structure Function of Stationary Random Processes // Atmospheric and Oceanic Optics, 2022, V. 35. No. 01. pp. 27–35.
Copy the reference to clipboard    Open the english version
7. Аntokhin P. N., Arshinova V. G., Arshinov M. Yu., Belan B. D., Belan S. B., Golobokova L. P., Davydov D. K., Ivlev G. A., Kozlov A. V., Kozlov A. S., Otmakhov V. I., Rasskazchikova T. M., Simonenkov D. V., Tolmachev G. N., Fofonov A. V. Differences in air composition between troposphere and stratosphere near tropopause. P. 874–881
Bibliographic reference:
Аntokhin P. N., Arshinova V. G., Arshinov M. Yu., Belan B. D., Belan S. B., Golobokova L. P., Davydov D. K., Ivlev G. A., Kozlov A. V., Kozlov A. S., Otmakhov V. I., Rasskazchikova T. M., Simonenkov D. V., Tolmachev G. N., Fofonov A. V. Differences in air composition between troposphere and stratosphere near tropopause. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 874–881. DOI: 10.15372/AOO20211107 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Golobokova L.P., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov A.S., Otmakhov V.I., Rasskazchikova T.M., Simonenkov D.V., Tolmachev G.N. and Fofonov A.V. Change in the Air Composition upon the Transition from the Troposphere to the Stratosphere // Atmospheric and Oceanic Optics, 2021, V. 34. No. 06. pp. 567–576.
Copy the reference to clipboard    Open the english version
8. Zenkova P. N., Chernov D. G., Shmargunov V. P., Panchenko M. V., Belan B. D. Submicron aerosol and absorbing substance in the troposphere of the Russian Arctic according to measurements of the TU-134 “Optic” aircraft laboratory in 2020. P. 882–890
Bibliographic reference:
Zenkova P. N., Chernov D. G., Shmargunov V. P., Panchenko M. V., Belan B. D. Submicron aerosol and absorbing substance in the troposphere of the Russian Arctic according to measurements of the TU-134 “Optic” aircraft laboratory in 2020. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 882–890. DOI: 10.15372/AOO20211108 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Zenkova P.N., Chernov D.G., Shmargunov V.P., Panchenko M.V. and Belan B.D. Submicron Aerosol and Absorbing Substance in the Troposphere of the Russian Sector of the Arctic According to Measurements Onboard the Tu-134 Optik Aircraft Laboratory in 2020 // Atmospheric and Oceanic Optics, 2022, V. 35. No. 01. pp. 43–51.
Copy the reference to clipboard    Open the english version
9. Smalikho I. N., Banakh V. A., Sukharev A. A. Determination of turbulence parameters from the spectra of vertical wind velocity component measured by a pulsed coherent Doppler lidar. Part III. Experiment on the coast of Lake Baikal. P. 891–897
Bibliographic reference:
Smalikho I. N., Banakh V. A., Sukharev A. A. Determination of turbulence parameters from the spectra of vertical wind velocity component measured by a pulsed coherent Doppler lidar. Part III. Experiment on the coast of Lake Baikal. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 891–897. DOI: 10.15372/AOO20211109 [in Russian].
Copy the reference to clipboard
10. Cheremisin A. A., Marichev V. N., Bochkovskii D. A., Novikov P. V., Romanchenko I. I. Stratospheric aerosol from Siberian forest fires according to lidar observations in Tomsk in August 2019. P. 898–905
Bibliographic reference:
Cheremisin A. A., Marichev V. N., Bochkovskii D. A., Novikov P. V., Romanchenko I. I. Stratospheric aerosol from Siberian forest fires according to lidar observations in Tomsk in August 2019. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 898–905. DOI: 10.15372/AOO20211110 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Cheremisin A.A., Marichev V.N., Bochkovskii D.A., Novikov P.V. and Romanchenko I.I. Stratospheric Aerosol of Siberian Forest Fires According to Lidar Observations in Tomsk in August 2019 // Atmospheric and Oceanic Optics, 2022, V. 35. No. 01. pp. 57–64.
Copy the reference to clipboard    Open the english version
11. Konyaev P. A., Lukin V. P., Nosov V. V., Nosov E. V., Soin E. L., Torgaev A. V. Comparative measurements of atmospheric turbulence parameters by optical methods. P. 906–915
Bibliographic reference:
Konyaev P. A., Lukin V. P., Nosov V. V., Nosov E. V., Soin E. L., Torgaev A. V. Comparative measurements of atmospheric turbulence parameters by optical methods. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 906–915. DOI: 10.15372/AOO20211111 [in Russian].
Copy the reference to clipboard
12. Tentyukov M. P., Lutoev V. P., Belan B. D., Simonenkov D. V., Golovataya O. S. Ultraviolet radiation detector based on artificial periclase nanocrystals (MgO). P. 916–923
Bibliographic reference:
Tentyukov M. P., Lutoev V. P., Belan B. D., Simonenkov D. V., Golovataya O. S. Ultraviolet radiation detector based on artificial periclase nanocrystals (MgO). // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 916–923. DOI: 10.15372/AOO20211112 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tentyukov M.P., Lyutoev V.P., Belan B.D., Simonenkov D.V. and Golovataya O.S. Ultraviolet Radiation Detector Based on Artificial Periclase Nanocrystals (MgO) // Atmospheric and Oceanic Optics, 2022, V. 35. No. 01. pp. 89–96.
Copy the reference to clipboard    Open the english version
13. Information. P. 924