Vol. 34, issue 06, article # 7

Zakharenko V. S., Daibova E. B. Surface properties of aerosol microparticles from mineral zircon under tropospheric conditions. // Optika Atmosfery i Okeana. 2021. V. 34. No. 06. P. 430–433. DOI: 10.15372/AOO20210607 [in Russian].
Copy the reference to clipboard
Abstract:

The adsorption and photosorption properties of aerosol particles from zircon (ZrSiO4) have been studied under conditions similar to tropospheric. For the aerosol, the physicochemical characteristics were determined by diffuse reflection spectroscopy. The analysis of the composition of the adsorbed layer formed in the troposphere is carried out. In the dark, mainly carbon dioxide is desorbed from the surface of zircon microparticles, as when illuminating the surface of aerosol particles. The kinetic dependences of СО2 desorption and О2 adsorption in the dark and under illumination are studied. The quantum yields and spectral dependences of the quantum yields of photodesorption and photoadsorption are determined. The spectral dependences of the effective quantum yield confirm the photochemical activity of the deposited aerosol from zircon under solar irradiation (λ > 300 nm).

Keywords:

zircon mineral, precipitated aerosol, tropospheric conditions, adsorbed layer, photodesorption, photoadsorption, quantum yield

References:

1. Baryshev V.P., Bufetov N.S., Koutzenogii K.P., Makarov V.I., Smirnova A.I. Synchrotron radiation measurements of the elemental composition of Siberian aerosols // Nuclear Instrum. Meth. Phys. Res. Section A. 1995. V. 359. P. 297–301.
2. Koval'skaya G.A. Elementnyj sostav atmosfernyh aerozolej v massovyh edinitsah kak funktsiya tipov pochvy, podvergshejsya vetrovoj erozii // Optika atmosf. i okeana. 2002. V. 15, N 5–6. P. 506–510.
3. Arshinov M.Yu., Belan B.D., Belan S.B., Voronetskaya N.G., Davydov D.K., D'yachkova A.V., Ivlev G.A., Kozlov A.V., Kozlov A.S., Malyshkin S.B., Pevneva G.S., Simonenkov D.V., Tolmachev G.N., Fofonov A.V. Sovmestnyj analiz razlichnyh komponentov troposfernogo aerozolya nad fonovym rajonom yuga Zapadnoj Sibiri // XXVII Konferentsiya «Aerozoli Sibiri»: tez. dokl. Tomsk: Izd-vo IOA SO RAN, 2020. P. 33–35.
4. Kostov I. Mineralogiya. M.: Mir, 1971. 584 p.
5. Zaharenko V.S., Filimonov A.P. Fotohimicheskie svojstva poroshkoobraznogo dioksida titana, poluchennogo iz monokristalla rutila v usloviyah okruzhayushchego vozduha // Optika atmosf. i okeana. 2009. V. 22, N 6. P. 611–614.
6. Zaharenko V.S., Dajbova E.B. Fotohimicheskaya aktivnost' osazhdennogo aerozolya, poluchennogo iz kristalla periklaza (MgO) v usloviyah okruzhayushchego vozduha // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 516–520.
7. Lunsford J.H., Jayne J.P. Formation of CO2 radical ions when CO2 is adsorbed on irradiated magnesium oxide //J. Phys. Chem. 1965. V. 69, N 7. P. 2182–2184.
8. Vavilov V.S. Dejstvie izluchenij na poluprovodniki. M.: Fizmatgiz, 1963. 352 p.
9. Zaharenko V.S., Dajbova E.B. Vzaimodejstvie kislorodsoderzhashchih soedinenij gazovoj fazy atmosfery s poverhnost'yu chastits osazhdennogo aerozolya, poluchennogo iz kristalla rutila (TiO2) // Optika atmosf. i okeana. 2014. V. 27, N 6. P. 530–533.
10. Lunsford J.H. The formation and reactivity of anion radicals on metal oxides // J. Solid State Chem. 1975. V. 12, iss. 3–4. Р. 288–289.
11. Fukuzawa S., Sancier K., Kwan T. Photoadsorption and photodesorption of oxygen on titanium dioxide // J. Catal. 1968. V. 11, iss. 4. Р. 364–369.
12. Ricci D., Pacchioni G., Sushko P.V., Shluger A.L. Reactivity of (H+)(e-) color centers at the MgO surface: Formation of O2- and N2- radical anions // Surf. Sci. 2003. V. 542, iss. 3. P. 293–306.
13. Cherkashin A.E., Volodin A.M., Koshcheev S.V., Zaharenko V.S. Energeticheskoe stroenie, fotoadsorbtsionnye i fotokataliticheskie svojstva dvuokisi titana v reaktsii okisleniya okisi ugleroda // Uspekhi fotoniki. 1980. N 7. P. 86–142.