Vol. 34, issue 08, article # 8

Tarasenkov M. V., Zonov M. N., Belov V. V., Engel' M. V. Passive satellite sensing of the Earth’s surface through gaps in cloudy fields. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 621–628. DOI: 10.15372/AOO20210808 [in Russian].
Copy the reference to clipboard
Abstract:

An algorithm for estimating sizes of regions affected by cloudiness on the errors of retrieval the reflection coefficients of the Earth’s surface areas observed through gaps in a cloudy field is suggested. The algorithm is based on statistical simulation by the Monte-Carlo method of the process of radiation transfer through broken stochastic cloudiness. Two stochastic models of cloudy fields are considered: 1) clouds shaped as parallelepipeds and 2) clouds shaped as paraboloids. The method is tested for two fragments of actual MODIS images. It is shown that the broken cloudiness influences the error in the reflection coefficient retrieved at distances from 5–7 to 25 km from the observation point (depending on the observation conditions).

Keywords:

passive satellite sensing of the Earth’s surface, atmospheric correction, Earth’s surface reflection coefficients, broken cloudiness

References:

1.Nikolaeva O.V., Bass L.P., Germogenova T.A., Kokhanovsky A.A., Kuznetsov V.S., Mayer B. The influence of neighbouring clouds on the clear sky reflectance studied with the 3-D transport code RADUGA // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 94, N 3–4. P. 405–424. DOI: 10.1016/j.jqsrt.2004.09.037.
2. Wen G., Marshak A., Cahalan R.F., Remer L.A., Kleidman R.G. 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields // J. Geophys. Res. 2007. V. 112. P. D13204. DOI: 10.1029/2006JD008267.
3. Várnai T., Marshak A. MODIS observations of enhanced clear sky reflectance near clouds // Geophys. Res. Lett. 2009. V. 36. P. L06807. DOI: 10.1029/2008GL037089.
4. Marshak A., Wen G., Coakley Jr.J.A., Remer L.A., Loeb N.G., Cahalan R.F. A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds // J. Geophys. Res. 2008. V. 113. P. D14S17. DOI: 10.1029/2007JD009196.
5. Marshak A., Evans K.F., Várnai T., Wen G. Extending 3D near-cloud corrections from shorter to longer wavelengths // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 147. P. 79–85. DOI: 10.1016/j.jqsrt.2014.05.022.
6. Tarasenkov M.V., Kirnos I.V., Belov V.V. Nablyudenie zemnoj poverhnosti iz kosmosa cherez prosvet v oblachnom pole // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 767–771; Tarasenkov M.V., Kirnos I.V., Belov V.V. Observation of the Earth’s surface from the Space through a gap in a cloud field // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 39–43. DOI: 10.15372/AOO20160907.
7. Kargin B.A., Prigarin S.M. Imitatsionnoe modelirovanie kuchevoj oblachnosti dlya issledovaniya protsessov perenosa solnechnoj radiatsii v atmosfere metodom Monte-Karlo // Optika atmosf. i okeana. 1994. V. 7, N 9. P. 1275–1287.
8. Prigarin S.M., Kargin B.A., Ulrich GOppel. Random fields of broken clouds and their associated direct solar radiation, scattered transmission and albedo // Pure Appl. Opt. 1998. V. 7. P. 1389–1402.
9. Prigarin S.M., Zhuravleva T.B., Volikova P.V. Puassonovskaya model' mnogoslojnoj razorvannoj oblachnosti // Optika atmosf. i okeana. 2002. V. 15, N 10. P. 917–924.
10. Zuev V.E., Titov G.A. Sovremennye problemy atmosfernoj optiki: V. 9 Optika atmosfery i klimat. Tomsk: Spektr, 1996. 272 p.
11. Marshak A., Davis A., Wiscombe W., Cahalan R. Radiative smoothing in fractal clouds // J. Geophys. Res.: Atmos 1995. V. 100, N D12. P. 26247–26261. DOI: 10. 1029/95JD02895.
12. Zhuravleva T.B., Nasrtdinov I.M., Russkova T.V. Vliyanie 3D effektov oblakov na prostranstvenno-uglovye harakteristiki polya otrazhennoj solnechnoj radiatsii // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 758–766; Zhuravleva T.B., Nasrtdinov I.M., Russkova T.V. Influence of 3D cloud effects on spatial-angular characteristics of the reflected solar radiation field // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 103–110. DOI: 10.15372/AOO20160906.
13. Titov G.A., Zhuravleva T.B., Zuev V.E. Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation // J. Geophys. Res.: Atmos. 1997. V. 102, N D2. P. 1819–1832. DOI: 10.1029/96JD02218.
14. Titov G.A. Statisticheskoe opisanie perenosa opticheskogo izlucheniya v oblakah: dis. … dokt. fiz.-mat. nauk. Tomsk, 1988. 361 p.
15. Hess M., Koepke P., Schult I. Optical Properties of Aerosols and Clouds: The Software Package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79, N 5. P. 831–844.
16. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 1010. Hanscom AFB. 1988. MA 01731. 137 p.
17. Kozhevnikova A.V., Tarasenkov M.V., Belov V.V. Parallel'nye vychisleniya pri reshenii zadach vosstanovleniya koeffitsienta otrazheniya zemnoj poverhnosti po sputnikovym dannym // Optika atmosf. i okeana. 2013. V. 26, N 2. PС. 172–174; Kozhevnikova A.V., Tarasenkov M.V., Belov V.V. Parallel computations for solving problems of the reconstruction of the reflection coefficient of the earth’s surface by satellite data // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 326–328.
18. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. Novosibirsk: Nauka, 1976. 284 p.