Vol. 34, issue 10, article # 5

Smalikho I. N., Banakh V. A., Sherstobitov A. M., Falits A. V. Determination of turbulence parameters from the spectra of vertical wind velocity component measured by a pulsed coherent Doppler lidar. Part II. Experiment at the BEO of the IAO SB RAS. // Optika Atmosfery i Okeana. 2021. V. 34. No. 10. P. 779–791. DOI: 10.15372/AOO20211005 [in Russian].
Copy the reference to clipboard

In order to test a new method for determining the parameters of wind turbulence from the spectra of the vertical component of the wind speed vector measured by a pulsed coherent Doppler lidar (PCDL), in the summer of 2020 we conducted an experiment on the territory of the Basic Experimental Observatory (BEO) of the IAO SB RAS. A comparative analysis of the estimates of the turbulent energy dissipation rate obtained by two methods: 1) from the spectrum of the vertical component of the wind velocity vector (new method) and 2) from the azimuth structure function of the radial velocity measured by a conically scanning PCDL (previously used method) showed that the new method also gives an unbiased estimate. The results of lidar measurements of wind turbulence parameters in the presence of a low-level jet stream and an internal gravity wave in the atmospheric boundary layer are presented.


coherent Doppler lidar, wind, turbulence


  1. Smaliho I.N., Banah V.A., Sherstobitov A.M. Opredelenie parametrov turbulentnosti iz spektrov vertikal'noj skorosti vetra, izmeryaemoj impul'snym kogerentnym doplerovskim lidarom. Part I. Metod // Optika atmosf. i okeana. 2021. V. 34, N 10. P. 771–780.
  2. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664.
  3. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  4. Smalikho I.N., Banakh V.A. Effect of wind transport of turbulent inhomogeneities on estimation of the turbulence energy dissipation rate from measurements by a conically Scanning coherent Doppler lidar // Remote Sens. 2020. V. 12, N 17. P. 2802. DOI: 10.3390/rs12172802.
  5. Banah V.A., Smaliho I.N., Falits A.V. Opredelenie vysoty sloya turbulentnogo peremeshivaniya vozduha iz lidarnyh dannyh o parametrah vetrovoj turbulentnosti // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 169–184.
  6. Banakh V.A., Smalikho I.N., Falits V.A. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692.
  7. Vakkari V., O’Connor E.J., Nisantzi A., Mamouri R.E., Hadjimitsis D.G. Low-level mixing height detection in coastal locations with a scanning Doppler lidar // Atmos. Meas. Tech. 2015. V. 8, N 4. P. 1875–1885.
  8. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248.