Vol. 35, issue 01, article # 11

Shikhovtsev A. Yu. Method for estimation of optical turbulence parameters along line of sight of an astronomical telescope. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. 74–80. DOI: 10.15372/AOO20220111 [in Russian].
Copy the reference to clipboard
Abstract:

The modified method for retrieving the altitude profiles of the optical turbulence parameters is described. The altitude profiles of the dimensionless turbulent parameter and the structural constant of the air refractive index fluctuations are retrieved from the analysis of the Large Solar Vacuum Telescope data. The optical turbulence profiles are analyzed. It is found that the effective turbulence altitude is close to 2000 m at the site of the Large Solar Vacuum Telescope.

Keywords:

SLODAR, altitude profile, optical turbulence, effective turbulence height

References:

1. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Determination of the structural characteristic of the refractive index of optical waves in the atmospheric boundary layer with remote acoustic sounding facilities // Atmosphere. 2019. V. 711, N 711. DOI: 10.3390/atmos10110711.
2. Fahey T., Islam M., Gardi A., Sabatini R. Beam atmospheric propagation modelling for aerospace LIDAR applications // Atmosphere. 2021. V. 918, N 12. DOI: 10.3390/atmos12070918.
3. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in turbulent atmosphere // Proc. SPIE. N 729609. 2008. DOI: 10.1117/12.823804.
4. Botygina N.N., Kovadlo P.G., Kopylov E.A., Lukin V.P., Tuev M.V., Shihovtsev A.Yu. Otsenka kachestva astronomicheskogo videniya v meste raspolozheniya Bol'shogo solnechnogo vakuumnogo teleskopa po dannym opticheskih i meteorologicheskih izmerenij // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 942–947; Botygina N.N., Kopylov E.A., Lukin V.P., Tuev M.V., Kovadlo P.G., Shukhovtsev A.Y. Estimation of the astronomical seeing at the Large Solar Vacuum Telescope site from optical and meteorological measurements // Atmos. Ocean. Opt. 2014. V. 27, N 2. P. 142–146. DOI: 10.1134/S102485601402002X.
5. Schmidt D., Gorceix N., Goode P.R., Marino J., Rimmele T., Wöger F., Zhang X., Rigaut F., von der Lühe O. Clear widens the field for observations of the Sun with multi-conjugate adaptive optics // Astron. Astrophys. 2017. V. 597. P. L8.
6. Zhong L., Zhang L., Shi Z., Tian Y., Guo Y., Kong L., Rao X., Bao H., Zhu L., Rao C. Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging // Astron. Astrophys. 2020. V. 637. P. A99.
7. Wilson R.W. SLODAR: Measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor // Mon. Not. R. Astron. Soc. 2002. V. 337. P. 103–108.
8. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Fazovyj opticheskij metod izmereniya vysotnogo profilya atmosfernoj turbulentnosti // Izv. vuzov. Fizika. 2016. V. 59, N 12–2. P. 138–142.
9. Ren D., Zhao G., Wang X., Beck C., Broadfoot R. The first solar seeing profile measurement with two apertures and multiple guide regions // Solar Phys. 2018. V. 294, N 1. DOI: 10.1007/s11207-018-1389-z.
10. Wang Z., Zhang L., Rao C. Characterizing daytime wind profiles with the wide-field Shack-Hartmann wavefront sensor // Mon. Not. R. Astron. Soc. 2019. V. 483, N 4. P. 4910–4921. DOI: 10.1093/mnras/sty3417.
11. Wang Z., Zhang L., Kong L., Bao H., Guo Y., Rao X., Zhong L., Zhu L., Rao C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles // Mon. Not. R. Astron. Soc. 2018. V. 478, N 2. P. 1459–1467. DOI: 10.1093/mnras/sty1097.
12. Butterley T., Wilson R.W., Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data // Mon. Not. R. Astron. Soc. 2006. V. 369, N 2. P. 835–845. DOI: 10.1111/j.1365-2966.2006.10337.x.
13. Vedrenne N., Michau V., Robert C., Conan J.-M. Improvements in Cn2 profile monitoring with a Shack Hartmann wavefront sensor // Proc. SPIE. N 63030C. 2006. DOI: 10.1117/12.680444.
14. Sharmer G.B., van Werkhoven T.I.M. S-DIMM+ height characterization of day-time seeing using solar granulation // Astron. Astrophys. 2010. V. 513. P. A25. DOI: 10.1051/0004-6361/200913791.
15. Shihovtsev A.Yu., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Lukin V.P., Tomin V.E. Metod opredeleniya vysot turbulentnyh sloev v atmosfere // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 994–1000; Shikhovtsev A.Y., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Tomin V.E., Lukin V.P. Method for estimating the altitudes of atmospheric layers with strong turbulence // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 295–301. DOI: 10.1134/S1024856020030100.
16. Fried D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures / J. Opt. Society of America. 1966. V. 56, iss. 10. P. 1372–1379. DOI: /10.1364/JOSA.56.001372.
17. Gurvich A.S., Kon A.I., Mironov V.L., Khmel'tsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 277 p.
18. Ma H., Zhang P., Zhang J., Liu H., Fan C., Qiao C., Zhang W., Li X. A fast calculation method of far-field intensity distribution with point spread function convolution for high energy laser propagation // Appl. Sci. 2021. V. 11, N 10. P. 4450. DOI: 10.3390/app11104450.
19. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere / V.I. Tatarskij. M.: Nauka, 1967. 396 p.
20. Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lukin V.P. Razvitie elementnoj bazy dlya sozdaniya sistemy adaptivnoj optiki na solnechnom teleskope // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 990–997; Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lukin V.P. Development of components for adaptive optics systems for solar telescopes // Atmos. Ocean. Opt. 2018. V. 31, N 2. P. 216–223.
21. 
Antoshkin L.V., Botygina N.N., Emaleev O.N., Kovadlo P.G., Konyaev P.A., Lukin V.P., Petrov A.M., Yankov A.P. Adaptivnaya opticheskaya sistema s korrelyatsionnym datchikom smeshcheniya // Optika atmosf. i okeana. 2002. V. 15, N 11. P. 1027–1030.
22. Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lukin V.P. Development of elements for an adaptive optics system for solar telescope // J. Appl. Remote Sens. 2018. V. 12, N 4. P. 042403. DOI: 10.1117/1.JRS.12.042403.
23. Lukin V.P., Antoshkin L.V., Botygina N.N., Emaleev O.N., Grigor'ev V.M., Konyaev P.A., Kovadlo P.G., Skomorovskij V.I., Yankov A.P. Adaptivnaya opticheskaya sistema dlya solnechnogo nazemnogo teleskopa // Opticheskij zh. 2006. V. 73, N 3. P. 55–60; Lukin V.P., Antoshkin L.V., Botygina N.N., Emaleev O.N., Grigor'ev V.M., Konyaev P.A., Yankov A.P., Kovadlo P.G., Skomorovskii V.I. Adaptive optical system for a ground-based solar telescope // J. Opt. Technol. 2006. V. 73, iss. 3. P. 197–201. DOI: 10.1364/JOT.73.000197.
24. Bol'basova L.A., Gritsuta A.N., Lukin V.P. Datchik volnovogo fronta Sheka–Gartmana dlya raboty v shirokom diapazone izmeneniya harakteristik atmosfernoj turbulentnosti // IX Mezhdunar. konf. po fotonike i informatsionnoj optike. Sb. nauch. tr. 2020. P. 215–216.
25. Kucherenko M.A., Lavrinov V.V., Lavrinova L.N. Rekonstruktsiya iskazhennogo atmosfernoj turbulentnost'yu volnovogo fronta s uchetom opticheskoj skhemy teleskopa // Avtometriya. 2019. V. 55, N 6. P. 117–125. DOI: 10.15372/AUT20190615.
26. Tyson R.K. Topics in adaptive optics. InTech, 2012. 254 p.
27. Bol'basova L.A., Lukin V.P. Issledovaniya atmosfery dlya zadach adaptivnoj optiki // Optika atmosf. i okeana. 2021. V. 34, N 4. P. 254–271. DOI: 10.15372/AOO20210403.
28. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Prakticheskie rekomendatsii po vyboru mest razmeshcheniya nazemnyh astronomicheskih teleskopov // Solnechno-zemnaya fizika. 2011. B. 18. P. 86–97.
29. Kovadlo P.G., Shihovtsev A.Yu., Kopylov E.A., Kiselev A.V., Russkih I.V. Issledovanie opticheskih atmosfernyh iskazhenij po dannym izmerenij datchika volnovogo fronta // Izv. vuzov. Fizika. 2020. V. 63, N 11(755). P 109–114. DOI: 10.17223/00213411/63/11/109.
30. Grigor'ev V.M., Demidov M.L., Kolobov D.Yu., Pulyaev V.A., Skomorovskij V.I., Chuprakov S.A. Proekt Krupnogo solnechnogo teleskopa s diametrom zerkala 3 m // Solnechno-zemnaya fizika. 2020. V. 6, N 2. P. 19–36. DOI: 10.12737/szf-62202002.