Content of issue 10, volume 35, 2022

1. Tarasenkov M. V., Belov V. V., Poznaharev E. S. Analysis of characteristics of an optical communication channel on scattered radiation with an unmanned aerial vehicle. P. 791–798
Bibliographic reference:
Tarasenkov M. V., Belov V. V., Poznaharev E. S. Analysis of characteristics of an optical communication channel on scattered radiation with an unmanned aerial vehicle. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 791–798. DOI: 10.15372/AOO20221001 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Tarasenkov M.V., Belov V.V., Poznakharev E.S. Statistical Simulation of Characteristics of an Optical Communication Channel Based on Scattered Radiation with an Unmanned Aerial Vehicle // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S8–S16. DOI: 10.1134/S1024856023010189.
Copy the reference to clipboard    Open the english version
2. Kistenev Yu. V., Cuisset A., Romanovskii O. A., Zherdeva A. V. Study of trace atmospheric gases at the “water – atmosphere” interface using remote and local laser IR gas analysis: review. P. 799–810
Bibliographic reference:
Kistenev Yu. V., Cuisset A., Romanovskii O. A., Zherdeva A. V. Study of trace atmospheric gases at the “water – atmosphere” interface using remote and local laser IR gas analysis: review. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 799–810. DOI: 10.15372/AOO20221002 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Kistenev Y.V., Cuisset A., Romanovskii O.A., Zherdeva A.V. A Study of Trace Atmospheric Gases at the Water–Atmosphere Interface Using Remote and Local IR Laser Gas Analysis: A Review // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S17–S29. DOI: 10.1134/S1024856023010074.
Copy the reference to clipboard    Open the english version
3. Tsvyk R. Sh., Vostretsov N. A. Spectra of intensity fluctuations of scattered radiation of a focused laser beam in rain, drizzle, fog, and haze. P. 811–819
Bibliographic reference:
Tsvyk R. Sh., Vostretsov N. A. Spectra of intensity fluctuations of scattered radiation of a focused laser beam in rain, drizzle, fog, and haze. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 811–819. DOI: 10.15372/AOO20221003 [in Russian].
Copy the reference to clipboard
4. Pol'kin V. V., Golobokova L. P., Kruglinsky I. A., Pochyufarov A. O., Sakerin S. M., Khuriganova O. I. Statistical generalization of the characteristics of atmospheric aerosol over the White Sea (expeditions 2003–2021). P. 820–825
Bibliographic reference:
Pol'kin V. V., Golobokova L. P., Kruglinsky I. A., Pochyufarov A. O., Sakerin S. M., Khuriganova O. I. Statistical generalization of the characteristics of atmospheric aerosol over the White Sea (expeditions 2003–2021). // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 820–825. DOI: 10.15372/AOO20221004 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Pol’kin V.V., Golobokova L.P., Kruglinsky I.A., Pochufarov A.O., Sakerin S.M., Khuriganova O.I. Statistical Generalization of Atmospheric Aerosol Characteristics over the White Sea (2003–2021 Expeditions) // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S30–S37. DOI: 10.1134/S102485602301013X.
Copy the reference to clipboard    Open the english version
5. Smalikho I. N., Banakh V. A., Razenkov I. A., Sukharev A. A., Falits A. V., Sherstobitov A. M. Comparison of the results of joint measurements with Stream Line and LRV coherent Doppler lidars. P. 826–835
Bibliographic reference:
Smalikho I. N., Banakh V. A., Razenkov I. A., Sukharev A. A., Falits A. V., Sherstobitov A. M. Comparison of the results of joint measurements with Stream Line and LRV coherent Doppler lidars. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 826–835. DOI: 10.15372/AOO20221005 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Smalikho I.N., Banakh V.A., Razenkov I.A., Sukharev A.A., Falits A.V., Sherstobitov A.M. Comparison of Results of Joint Wind Velocity Measurements with the Stream Line and WPL Coherent Doppler Lidars // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S79–S91. DOI: 10.1134/S1024856023010177.
Copy the reference to clipboard    Open the english version
6. Kuskov V. V., Banakh V. A., Gordeev E. V., Shesternin A. N. Compensation for beam deviation from a direction specified based on atmospheric backscattering. P. 836–842
Bibliographic reference:
Kuskov V. V., Banakh V. A., Gordeev E. V., Shesternin A. N. Compensation for beam deviation from a direction specified based on atmospheric backscattering. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 836–842. DOI: 10.15372/AOO20221006 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Kuskov V.V., Banakh V.A., Gordeev E.V., Shesternin A.N. Compensation for Beam Deviation from a Specified Direction Based on Atmospheric Backscattering // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S92–S99 DOI: 10.1134/S1024856023010086.
Copy the reference to clipboard    Open the english version
7. Belan B. D., Ivlev G. A., Kozlov A. V., Pestunov D. A., Sklyadneva T. K., Fofonov A. V. Solar radiation  measurements at the Fonovaya observatory. Part II. Measurement results of 2021. P. 843–849
Bibliographic reference:
Belan B. D., Ivlev G. A., Kozlov A. V., Pestunov D. A., Sklyadneva T. K., Fofonov A. V. Solar radiation  measurements at the Fonovaya observatory. Part II. Measurement results of 2021. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 843–849. DOI: 10.15372/AOO20221007 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Belan B.D., Ivlev G.A., Kozlov A.V., Pestunov D.A., Sklyadneva T.K., Fofonov A.V. Solar Radiation Measurements at the Fonovaya Observatory: Part II: Results from 2021 Measurements // Atmospheric and Oceanic Optics, 2023, V. 36. No. 01. pp. 54–60.
Copy the reference to clipboard    Open the english version
8. Moiseenko K. B., Vasilieva A. V., Skorochod A. I., Shtabkin Yu. A., Belikov I. B., Repin A. Yu. O3–NO–NO2 photostationary state and near-surface ozone generation from ZOTTO Tower data (central Siberia). P. 850–857
Bibliographic reference:
Moiseenko K. B., Vasilieva A. V., Skorochod A. I., Shtabkin Yu. A., Belikov I. B., Repin A. Yu. O3–NO–NO2 photostationary state and near-surface ozone generation from ZOTTO Tower data (central Siberia). // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 850–857. DOI: 10.15372/AOO20221008 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Moiseenko K.B., Vasileva A.V., Skorokhod A.I., Shtabkin Yu.A., Belikov I.B., Repin A.Yu. Photostationary Equilibrium in the O3–NOx System and Ozone Generation According to ZOTTO Tall Tower Data // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S125–S132. DOI: 10.1134/S1024856023010128.
Copy the reference to clipboard    Open the english version
9. Luzhetskaya A. P., Nagovitsyna E. S., Omelkova E. V., Poddubnyi V. A. Temporal variability and relationship between the surface concentration of PM2.5 and the aerosol optical depth according to measurements in the Middle Urals. P. 858–867
Bibliographic reference:
Luzhetskaya A. P., Nagovitsyna E. S., Omelkova E. V., Poddubnyi V. A. Temporal variability and relationship between the surface concentration of PM2.5 and the aerosol optical depth according to measurements in the Middle Urals. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 858–867. DOI: 10.15372/AOO20221009 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Luzhetskaya A.P., Nagovitsyna E.S., Omelkova E.V., Poddubny V.A. Temporal Variability and Relationship between Surface Concentration of PM2.5 and Aerosol Optical Depth According to Measurements in the Middle Urals // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S133–S142. DOI: 10.1134/S1024856023010098.
Copy the reference to clipboard    Open the english version
10. Mankovsky V. I. Spectral variability of light scattering phase function in Lake Baikal waters. P. 868–870
Bibliographic reference:
Mankovsky V. I. Spectral variability of light scattering phase function in Lake Baikal waters. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 868–870. DOI: 10.15372/AOO20221010 [in Russian].
Copy the reference to clipboard
11. Bol'basova L. A., Lukin V. P. Possibilities of adaptive optical correction of the global wavefront tilt using signals from traditional and polychromatic laser guide stars. P. 871–877
Bibliographic reference:
Bol'basova L. A., Lukin V. P. Possibilities of adaptive optical correction of the global wavefront tilt using signals from traditional and polychromatic laser guide stars. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 871–877. DOI: 10.15372/AOO20221011 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Bolbasova L.A., Lukin V.P. Possibilities of Adaptive Optical Correction of the Global Wavefront Tilt Using Signals from Traditional and Polychromatic Laser Guide Stars // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S165–S170. DOI: 10.1134/S1024856023010037.
Copy the reference to clipboard    Open the english version
12. Ezhov D. M., Lubenko D. M., Mamrashev A. A., Andreev Yu. M. Temperature dependences of the refractive indices of a nonlinear LiB3O5 crystal in the THz range. P. 878–880
Bibliographic reference:
Ezhov D. M., Lubenko D. M., Mamrashev A. A., Andreev Yu. M. Temperature dependences of the refractive indices of a nonlinear LiB3O5 crystal in the THz range. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 878–880. DOI: 10.15372/AOO20221012 [in Russian].
Copy the reference to clipboard
Bibliographic reference to english version:
Ezhov D.M., Lubenko D.M., Mamrashev A.A., Andreev Yu.M. Temperature Dependence of Refractive Indices of Nonlinear LiB3O5 Crystals in THz Range // Atmos. Ocean. Opt. 2022. V. 35, N S1. P.  S171–S173. DOI: 10.1134/S1024856023010050.
Copy the reference to clipboard    Open the english version
13. Personalia.. P. 881–882