Vol. 35, issue 04, article # 9

Apeksimov D. V., Geints Yu. E., Kabanov A. M., Petrov A. V., Khoroshaeva E. E. Regularities of femtosecond laser radiation filamentation in air under aberration focusing. // Optika Atmosfery i Okeana. 2022. V. 35. No. 04. P. 298–306. DOI: 10.15372/AOO20220409 [in Russian].
Copy the reference to clipboard
Abstract:

Results of laboratory experiments on control of the filamentation domain of a focused femtosecond laser beam with a spatially structured (using a deformable mirror) wavefront are described. Aberration beams consisting of coherent interleaved ring subapertures obtained with a deformable mirror of specific form are studied. This allows producing inhomogeneities of the distribution of the optical field amplitude during laser beam propagation; these inhomogeneities can subsequently become seeds for light filaments. This approach to control high-power radiation filamentation does not require compensation for distortions of the initial beam profile; on the contrary, it is based on controllable introduction of pre-calculated wavefront aberrations.

Keywords:

ultrashort laser radiation, structured light, Kerr effect, self-focusing, high-intensity light channels

References:

  1. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, N 1. P. 73–75.
  2. Self-focusing: Past and Present / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). Berlin: Springer, 2009. 605 p.
  3. Daigle J.-F., Kosareva O., Panov N., Wang T.-J., Hosseini S., Yuan S., Roy G., Chin S.L. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams // Opt. Commun. 2011. V. 284. P. 3601–3606.
  4. Geints Yu.E., Ionin A.A., Mokrousova D.V., Seleznev L.V., Sinitsyn D.V., Sunchugasheva E.S., Zemlyanov A.A. High intensive light channels formation in post-filamentation region of ultrashort laser pulses in air // J. Opt. 2016. V. 18, N 9. P. 095503.
  5. Méchain G., Couairon A., Andre Y.-B., D'Amico C., Franco M., Prade B., Tzortzakis S., Mysyrowicz A., Sauerbrey R. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization // Appl. Phys. B. 2004. V. 79. P. 379–382.
  6. Apeksimov D.V., Geints Yu.E., Matvienko G.G., Oshlakov V.K., Zemlyanov A.A. Experimental study of high-intensity light channels produced on extended air-path by phase and amplitude modulated femtosecond laser pulses // Appl. Opt. 2022. V. 61, N 6. P. 1300–1306.
  7. Singh J., Thakur S. Laser-Induced Breakdown Spectroscopy. Elsevier Science, 2020. 620 p.
  8. Clerici M., Hu Y., Lassonde P., Milian C., Couairon A., Christodoulides D.N., Chen Z., Razzari L., Vidal F., Legare F., Faccio D., Morandotti R. Laser-assisted guiding of electric discharges around objects // Sci. Adv. 2015. V. 1, N 5. P. 1400111.
  9. Durand M., Houard A., Prade B., Mysyrowicz A., Durécu A., Moreau B., Fleury D., Vasseur O., Borchert H., Diener K., Schmitt R., Théberge F., Chateauneuf M., Daigle J., Dubois J. Kilometer range filamentation // Opt. Express. 2013. V. 21, N 22. P. 26836–26845.
  10. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentaciya moshchnogo femtosekundnogo lazernogo izlucheniya // Kvant. elektron. 2009. V. 39, N 3. P. 205–228.
  11. Kasparian J., Wolf J.-P. Physics and applications of atmospheric nonlinear optics and filamentation // Opt. Express. 2008. V. 16, N 1. P. 466–493.
  12. Mechain G., Amico C.D., Andre Y.-B., Tzortzakis S., Franco M., Prade B., Mysyrowicz A., Couairon A., Salmon E., Sauerbrey R. Range of plasma filaments created in air by a multi-terawatt femtosecond laser // Opt. Commun. 2005. V. 247, N 1. P. 171–180.
  13. Liu W., Hosseini S.A., Luo Q., Ferland B., Chin S.L., Kosareva O.G., Panov N.A., Kandidov V.P. Experimental observation and simulations of the self-action of white light laser pulse propagating in air // New J. Phys. 2004. V. 6, N 6. P. 6.1–6.8.
  14. Hosseini S.A., Luo Q., Ferland B., Liu W., Chin S.L., Kosareva O.G., Panov N.A., Aközbek N., Kandidov V.P. Competition of multiple filaments during the propagation of intense femtosecond laser pulses // Phys. Rev. A. 2004. V. 70, N 3. P. 033802-1–033802-12.
  15. Ionin A.A., Iroshnikov N.G., Kosareva O.G., Larichev A.V., Mokrousova D.V., Panov N.A., Seleznev L.V., Sinitsyn D.V., Sunchugasheva E.S. Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror // J. Opt. Soc. Am. B: Opt. Phys. 2013. V. 30, N 8. P. 2257–2262.
  16. Apeksimov D.V., Geints Yu.E., Matvienko G.G., Oshlakov V.K., Zemlyanov A.A. Experimental study of high-intensity light channels produced on extended air-path by phase and amplitude modulated femtosecond laser pulses // Appl. Opt. 2022. V. 61, N 6. P. 1300–1306.
  17. Kosareva O.G., Liu W., Panov N.A., Bernhardt J., Ji Z., Sharifi M., Li R., Xu Z., Liu J., Wang Z., Ju J., Lu X., Jiang Y., Leng Y., Liang X., Kandidov V.P., Chin S.L. Can we reach very high intensity in air with femtosecond PW Laser pulses? // Laser Phys. 2009. V. 19, N 8. P. 1776.
  18. Jacques M.B. Adaptive optics for astronomy principles, performance, and applications // Ann. Rev. Astron. Astroph. 1993. V. 31, N 1. P. 13–62.
  19. Berge L., Skupin S., Lederer F., Me'jean G., Yu J., Kasparian J., Salmon E., Wolf J.P., Rodriguez M., Woste L., Bourayou R., Sauerbrey R. Multiple filamentation of terawatt laser pulses in air // Phys. Rev. Lett. 2004. V. 92. P. 22502.
  20. Bokalo S.Yu., Zhupanov V.G., Lyakhov D.M., Mizin P.P., Smekalin V.P., Shanin O.I., Shchipalkin V.I., Garanin S.G., Grigorovich S.V., Koltygin M.O., Kulikov S.M., Manachinskii A.N., Ogorodnikov A.V., Smyshlyaev S.P., Sukharev S.A. Deformable mirror based on piezoelectric actuators for the adaptive system of the ISKRA-6 facility // Quantum. Electron. 2007. V. 37, N 8. P. 691–696.
  21. Romanova G.E., Parpin M.A., Seregin D.A. Konspekt lekcij po kursu «Komp'yuternye metody kontrolya optiki». SPb.: ITMO, 2011. 185 p.
  22. Lavrinov V.V., Lavrinova L.N. Analiz zavisimosti dinamicheskih svojstv adaptivnoj opticheskoj sistemy ot harakteristik gibkogo zerkala i sposoba vozdejstviya na nego // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 570–577.
  23. Apeksimov D.V., Geints Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K. Upravlenie harakteristikami mnozhestvennoj filamentacii femtosekundnyh lazernyh impul'sov v vozduhe // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 717–725; Apeksimov D.V., Geints Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K. Control of multiple filamentation of femtosecond laser pulses in air // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 42–50.
  24. Prokop'ev V.E., Lubenko D.M., Losev V.F. Issledovanie prostranstvennoj struktury femtosekundnogo lazernogo puchka v oblasti filamenta pri ego aberracionnoj fokusirovke v vozduhe // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 685–689.
  25. Geints Yu.E., Zemlyanov A.A. Ring-Gaussian laser pulse filamentation in a self-induced diffraction waveguide // J. Opt. 2017. V. 19, N 10. P. 105502.
  26. Apeksimov D.V., Golik S.S., Zemlyanov A.A., Kabanov A.M., Mayor A.Yu., Petrov A.V. Dinamika struktury oblasti mnozhestvennoj filamentacii lazernyh impul'sov v stekle // Optika atmosf. i okeana. 2016. V. 29, N 12. P. 1029–1033; Apeksimov D.V., Golik S.S., Zemlyanov A.A., Kabanov A.M., Mayor A.Yu., Petrov A.V. Dynamics of the structure of multiple filamentation domain of laser pulses in glass // Atmos. Ocean. Opt. 2017. V. 30, N 3. P. 222–225.
  27. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Lokalizovannye svetovye struktury s vysokoj intensivnost'yu pri mnozhestvennoj filamentacii femtosekundnogo impul'sa titan-sapfirovogo lazera na vozdushnoj trasse // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 910–914; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Localized high-intensity light structures during multiple filamentation of Ti:Sapphire laser femtosecond pulses along an air path // Atmos. Ocean. Opt. 2018. V. 31, N 2. P. 107–111.