Vol. 32, issue 11, article # 8

Shishigin S. A. Investigation of the method for correction of gas content in air by the outgoing radiation of the atmosphere. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 925–929. DOI: 10.15372/AOO20191108 [in Russian].
Copy the reference to clipboard
Abstract:

A model of the atmosphere is considered as a sequence of homogeneous layers 100 m thick from the Earth’s surface to a height of 5 km. Layer parameters are defined for a standard atmosphere. Contribution to the outgoing radiation of the atmosphere in the spectral regions of the methane absorption band of the P- (1240.901–1240.949 cm-1) and R-branches (1327,12–1327,17 cm-1) is equal to the contributions to the outgoing radiation of the Earth by all non-uniform layers. A possible method for adjusting the temperature of the atmospheric layer and the underlying surface according to the convergence of the results of simultaneous calculations of the content of the test gas in atmospheric layers using outgoing radiation in the P- and R-branches of the absorption band of this gas is shown.

Keywords:

atmosphere, methane, temperature, homogeneous layer, IR radiation, spectrum, method

References:

  1. Rakitin V.S., Elanskij N.F., Pankratova N.V., Skorohod A.I., Dzhola A.V., Shtabkin Yu.A., Van Pusaj., Van Gen Chen., Vasil'eva A.V., Makarova M.V., Grechko E.I. Issledovanie trendov obshchego soderzhaniya CO i CH4 nad Evraziej na osnove analiza nazemnyh i orbital'nyh spektroskopicheskih izmerenij // Optika atmosf. i okeana. 2017. V. 30, N 6. P. 449–456.
  2. Prinn R., Heimbach P., Rigby M., Dutkiewicz S., Melillo J.M., Reilly J.M., Kicklighter D.W., Waugh C. A strategy for a global observing system for verification of national greenhouse gas emissions // Joint Prog. Rep. Ser. 2011. N 200. 92 p.
  3. Antohina O.Yu., Antohin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Belov V.V., Gridnev Yu.V., Davydov D.K., Ivlev G.A., Kozlov A.V., Law K.S., Nedelec Ph., Paris J.-D., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Sravnenie raspredeleniya kontsentratsij gazovyh primesej vozduha, izmerennyh distantsionnymi i kontaktnymi sredstvami nad Rossijskim sektorom Arktiki // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 542–550.
  4. Abshire J.B., Riris H., Hasselbrack W., Allan G., Weaver C., Mao J. Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument // Proc. 2009 Conf. on Lasers and Electro-Optics. Opt. Soc. Am. Paper CFU-2. 2009a. P. 255–256.
  5. Zadvornyh I.V., Gribanov K.G., Zaharov V.I., Imasu R. Metod dlya opredeleniya vertikal'nogo profilya metana iz spektrov atmosfery, izmerennyh odnovremenno v teplovom i blizhnem IK-diapazonah // Optika atmosf. i okeana. 2018. V. 31, N 12. P. 962–967.
  6. Yokota T., Yoshiba Y., Eguchi N., Ota Y., Tanaka T., Watanabe H., Maksyutov S. Global Consentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results // SOLA. 2009. V. 5. P. 160–163.
  7. Crisp D., Atlas R.M., Breon F.M., Brown L.R., Burrows J.P., Ciais P. The Orbiting Carbon Observatory (OCO) mission // Adv. Space Res. 2004. V. 34, N 4. P. 700–709.
  8. Virolajnen Ya.A., Dement'ev B.V., Ivanov V.V, Polyakov A.V. Optimizatsiya parametrov gazokorrelyatsionnogo IK-radiometra dlya izmereniya soderzhaniya metana v pogranichnom sloe atmosfery s aerokosmicheskoj platformy // Issled. Zemli iz kosmosa. 2002. N 5. P. 1–10.
  9. Arshinov M.Yu, Belan B.D., Davydov D.K., Krekov G.M., Fofonov A.F., Babchenko S.V., Inoue G., Machida T., Maksutov Sh., Sasakawa M., Shimoyama K. Dinamika vertikal'nogo raspredeleniya parnikovyh gazov v atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1051–1061.
  10. Aoki S., Nakazawa T., Machida T., Sugawara S., Morimoto S. Carbon dioxide variations in the stratosphere over Japan, Scandinavia and Antarctica // Tellus B. 2003. V. 55, N 2. P. 178–186.
  11. Rakitin V.S., Shtabkin Yu.A., Elanskij N.F., Pankratova N.V., Skorohodov A.I., Grechko E.I., Safronov A.N. Rezul'taty sopostavleniya sputnikovyh izmerenij obshchego soderzhaniya СО, СН4, i СО2 s nazemnymi spektroskopicheskimi dannymi // Оптика Optika atmosf. i okeana. 2015. V. 28, N 9. P. 816–824.
  12. Polyakov A.V. Opredelenie gazovogo sostava atmosfery i harakteristik aerozolya zatmennym metodom: dis. kand. fiz.-mat. nauk. Sankt-Peterburg: In-t fiziki SPbGU, 2006. 373 p.
  13. Falaleeva V.A., Fomin B.A. Spektroskopicheskie problemy v pryamyh zadachah sputnikovogo zondirovaniya atmosfery i puti ih preodoleniya // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 733–738.
  14. Rokotyan N.V., Gribanov K.G., Zaharov V.I. Effekt temperaturno-nezavisimogo pogloshcheniya i ego ispol'zovanie dlya zondirovaniya parnikovyh gazov v atmosfere // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 510–515.
  15. Shishigin S.A. Metodika opredeleniya soderzhaniya metana v atmosfere s pomoshch'yu korrelyatsionnogo radiometra // Issled. Zemli iz kosmosa. 2015. N 5. P. 3–8.
  16. Zuev V.E. Rasprostranenie vidimyh i infrakrasnyh voln v atmosfere. M: Sovetskoe radio. 1970. 496 p.
  17. Shishigin S.A., Eremina A.S. Adjustment of the vertical distribution of gas content in the air on the outgoing radiation of the atmosphere // Proc. SPIE. 2018. V. 10833. P. 10833-86.
  18. Mihajlenko S.N., Babikov Yu.L., Golovko V.F. Informatsionno-vychislitel'naya sistema «Spektroskopiya atmosfernyh gazov». Struktura i osnovnye funktsii // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 765–776.