Vol. 34, issue 08, article # 9

Zarochentsev G. A., Rubinshtein K. G. The quality of modern numerical visibility forecast methods
 
. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. 629–637. DOI: 10.15372/AOO20210809 [in Russian].

Copy the reference to clipboard
Abstract:

The paper presents estimates of recent numerical visibility forecast methods in the atmosphere. METAR reports for 786 airports in Europe and central Russia for the period 01.02.2020–01.08.2020 were used as visibility standards. The estimates were summarized in three ranges: poor visibility (0–1500 m), satisfactory (1500–3000), and good (3000 or more) for certain regions of Western Europe and the European territory of Russia. It is shown that the forecast of poor visibility by all the considered methods for up to 36–48 hours can be satisfactory. For a longer period, the accuracy drops noticeably, and the forecast using the method presented by the authors shows high accuracy for low visibility in most regions. The rest of the methods make it possible to predict good visibility.

Keywords:

fog, meteorological visibility, mesoscale modeling, transfer of moisture in the surface layer

Figures:
References:

  1. Khromov S.P., Mamontova L.I. Meteorologicheskij slovar'. L.: Gidrometeoizdat, 1974. 569 p.
  2. Bang C.H., Lee J.W., Hong S.Y. Predictability experiments of fog and visibility in local airports over Korea using the WRF model // J. KOSAE. 2008. V. 24, N E2. P. 92–101.
  3. Zarochentsev G.A., Rubinstein K.G., Bychkova V.I., Ignatov R.Yu., Yusupov Yu.I. Sravnenie neskol'kih chislennyh metodov prognoza tumanov // Optika atmosf. i okeana. 2018. V. 31, N 12. P. 981–987; Zarochentsev G.A., Rubinstein K.G., Bychkova V.I., Ignatov R.Yu., Yusupov Yu.I. Comparison of several numerical methods of fog forecasting // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 193–201.
  4. Koschmieder H. Theorie der horizontalen sichtweite// Beitr. Phys. Frei. Atmos. 1924. V. 12. P. 171–181.
  5. Stoelinga M.T., Warner T.T. Nonhydrostatic, mesobetascale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event // J. Appl. Meteorol. 1999. V. 38, N 4. P. 385–404.
  6. Kunkel B.A. Parameterization of droplet terminal velocity and extinction coefficient in fog models // J. Clim. Appl. Meteorol. 1984. V. 23, N 1. P. 34–41.
  7. Rutledge S.A., Hobbs P. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seederfeeder” process in warm-frontal rainbands // J. Atmos. Sci. 1983. V. 40, N 5. P. 1185–1206.
  8. Stallabrass J.R. Snow property measurement workshop // Proc. National Research Council Associate Committee on Geotechnical Research Canada. 1985. N 140. P. 389–410.
  9. Marshall J.S., Palmer W.M. The distribution of raindrops with size // J. Meteorol. 1948. V. 5. P. 165–166.
  10. Bieringer P.E., Donovan M., Robasky F., Clark D.A., Hurst J. A characterization of NWP ceiling and visibility forecasts for the terminal airspace // 12th Conf. Aviation, Range, and Aerospace Meteorology. Atlanta, GA. 2006. 14 p.
  11. Clark P.A., Harcourt S.A., Macpherson B., Mathison C.T., Cusack S., Naylor M. Prediction of visibility and aerosol within the operational Met Office Unified Model. I: Model formulation and variational assimilation // Q. J. R. Meteorol. Soc. 2008. V. 134, N 636. P. 1801–1816.
  12. Zarochentsev G.A., Rubinshtejn K.G. Kombinirovannyj metod prognoza dal'nosti vidimosti i tumana // Gidrometeorol. issl. i prognozy. 2020. N 1 (375). P. 113–129.
  13. Kiryuhin V.I. Nastavlenie po meteorologicheskomu obespecheniyu grazhdanskoj aviatsii SSSR (MNO GA-90). L.: Gidrometeoizdat, 1990. 104 p.
  14. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Wang W., Powers J.G. A description of the advanced research WRF version 2. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research. Boulder; Colorado, USA, 2005. N NCAR/TN468+STR. DOI: 10.5065/D68S4MVH.
  15. Grell G.A., Kuo Y.H., Pasch R.J. Semiprognostic tests of cumulus parameterization schemes in the middle latitudes // Mon. Weather Rev. 1991. V. 119, N 1. P. 5–31.
  16. Iacono M.J., Delamere J.S., Mlawer E.J., Shephard M.W., Clough S.A., Collins W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models // J. Geophys. Res.: Atmos. 2008. V. 113, N D13. P. 1–8.
  17. Nakanishi M., Niino H. Development of an improved turbulence closure model for the atmospheric boundary layer // J. Meteorol. Soc. Jap. Ser. II. 2009. V. 87, N 5. P. 895–912.
  18. Ek M.B., Mitchell K.E., Lin Y., Rogers E., Grunmann P., Koren V., Gayno G., Tarpley J.D. Implementation of NOAH land surface model advances in the NCEP operational mesoscale Eta model // J. Geophys. Res., 2003, V. 108, N 22, P. 8851.
  19. Thompson G., Rasmussen R.M., Manning K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis // Mon. Weather Rev. 2004. V. 132, N 2. P. 519–542.
  20. Tiedtke M.A comprehensive mass flux scheme for cumulus parameterization in large-scale models // Mon. Wea. Rev. 1989. V. 117. N 8. P. 1779–1800.
  21. Morcrette J.-J., Barker H., Cole J., Iacono M., Pincus R. Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System // Mon. Weather Rev. 2008. V. 136. P. 4773–4798.
  22. Mlawer E.J., Taubman S.J., Brown P.D., Iacono M.J., Clough S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave // J. Geophys. Res. 1997. V. 102D. P. 16663–16682.
  23. Viterbo P., Beljaars A.C.M. An improved land surface parameterization scheme in the ECMWF model and its validation // J. Clim. 1995. V. 11. P. 2716–2748.
  24. Viterbo P., Beljaars A.C.M., Mahouf J.-F., Teixeira J. The representation of soil moisture freezing and its impact on the stable boundary layer. // Q. J. R. Meteorol. Soc. 1999. V. 125. P. 2401–2426.
  25. Van den Hurk B.J.J.M., Viterbo P., Beljaars A.C.M., Betts A.K. Offline validation of the ERA40 surface scheme // ECMWF Tech. Memo. 2000. N 295. P. 00–00.
  26. Tiedtke M. Representation of clouds in large-scale models // Mon. Weather Rev. 1993. V. 121. P. 3040–3061.
  27. Forbes R., Tompkins A. An improved representation of cloud and precipitation // ECMWF Newsletter. 2011. V 129, N 129. P. 13–18.
  28. Forbes R.M., Tompkins A.M., Untch A. A new prognostic bulk microphysics scheme for the IFS // ECMWF Tech. Memoranda. 2011. P. 22.