СПЕКТРОСКОПИЯ АТМОСФЕРНЫХ ГАЗОВ

УДК 535.343.4

В.В. Лазарев, Т.М. Петрова, Л.Н. Синица, Кинг-Ши Цу, Я-Ксианг Хан, Лу-Юан Хао

СПЕКТР ПОГЛОЩЕНИЯ HD¹⁶O В ОБЛАСТИ 0,7 мкм

Исследован спектр поглощения паров $\mathrm{HD^{16}O}$ в области $12700-12900~\mathrm{cm^{-1}}$. Измерения проведены с помощью оптико-акустического спектрометра на основе лазера на титане с сапфиром с пороговой чувствительностью к поглощению $10^{-8}~\mathrm{cm^{-1}}$. Впервые идентифицированы линии поглощения полосы $5v_1~\mathrm{HD^{16}O}$. Определены 54 колебательно-вращательных уровня высоковозбужденного колебательного состояния (500) $\mathrm{HD^{16}O}$ с погрешностью от 0,0003 до 0,0066 $\mathrm{cm^{-1}}$. Решена обратная задача, найдены вращательные и центробежные постоянные подгонкой по методу наименьших квадратов.

Исследования внутримолекурярных взаимодействий молекулы водяного пара требуют знания энергетической структуры ее изотопных модификаций, в частности несимметричного изотопа HDO. Спектры поглощения HD16O важны и для атмосферных приложений, поскольку изотопные модификации воды могут вносить вклад в атмосферное поглощение, особенно в окнах и микроокнах прозрачности, влиять на распространение лазерного излучения через атмосферу [3]. Колебательно-вращательная структура энергетического спектра НD16О изучена слабо, особенно в области высоких энергий. В литературе до последнего времени имелись данные только о 15 колебательных состояниях (соответствующие литературные ссылки имеются в [1]). К ним можно добавить недавно опубликованную работу [2], в которой исследованы полосы 3v3 и 4v3. Недостаток данных в значительной степени ограничивает возможности изучения влияния внутримолекулярных взаимодействий на формирование спектра молекулы, особенно в коротковолновой области.

В данной статье представлены результаты анализа спектра поглощения $\mathrm{HD}^{16}\mathrm{O}$ в области 0,7 мкм.

Спектр поглощения смеси H_2^{16} O, D_2^{16} O и HD^{16} O зарегистрирован с помощью оптико-акустического спектрометра на основе одномодового перестраиваемого лазера на титане с сапфиром Coherent 899-29 с шириной линии генерации 50 кГц и шагом перестройки 50 МГц в диапазоне $12700-12900~\text{сm}^{-1}$. Спектрометр позволяет исследовать слабые линии поглощения в диапазоне $11300-13000~\text{cm}^{-1}$ и имеет пороговую чувствительность по коэффициенту поглощения $10^{-8}~\text{cm}^{-1}$, что соответствует 1%-му ослаблению луча в 10-км кювете для классической спектрофотометрии. Подробное описание спектрометра приведено в работе [4].

Измерения проводились при давлении смеси (H_2^{16} O, D_2^{16} O, HD^{16} O) 17 Торр и температуре 300 К. Смесь приготовлялась таким образом, что относительное содержание HD^{16} O составляло 50%, H_2^{16} O,

и $D_2^{16}O$ — по 25%. Зарегистрированный спектр содержит около 200 линий поглощения.

В исследуемом диапазоне были найдены 23 линии поглощения основной изотопной модификации воды, эти линии были идентифицированы по данным работы [6] и служили в дальнейшем реперными линиями, относительно которых определялись центры линий поглощения $\mathrm{HD^{16}O}$. Линии поглощения $\mathrm{D_2^{16}O}$ не были обнаружены, что в целом соответствут представлению о том, что переходы данной молекулы в ближней ИК- и видимой области имеют малую вероятность.

Для идентификации линий была использована специальная программа — экспертная система, использующая методы теории распознавания образов [5]. Применение методов распознавания значительно облегчило и упростило процедуру идентификации линий поглощения в спектре. При этом использовались метод комбинационных разностей нижнего состояния и оценки вращательных и центробежных постоянных.

Процедура идентификации линий поглощения включала:

- а) оценку положений центров линий поглощения и их относительных интенсивностей,
- б) использование метода комбинационных разностей,
- в) подгонку вращательных и центробежных постоянных с последующими предсказательными расчетами параметров линий поглощения (центры линий и их интенсивности) с большими значениями вращательного квантового числа J.

В результате анализа спектра проинтерпретировано 120 спектральных линий (табл. 1) полосы $5\nu_1$ HD 16 O, найдено 54 уровня энергии, соответствующих $J \le 9$ и $K_a \le 4$ (табл. 2). При этом использовались только те линии поглощения HD 16 O, центры которых не перекрываются с линиями основной изотопной модификации.

Таблица 1 Таблица 2

Спектр поглощения ${ m HD}^{16}{ m O}$ в области 0,7 мкм

Уровни энергии колебательно-вращательного состояния (500) HD16O

	1	1	T	ı	T		HD16O						
Частота, см ⁻¹	$J'K'_aK'_c$	$J''K''_aK''_c$	Частота, см ⁻¹	$J'K'_aK'_c$	$J''K''_aK''_c$				r m s		8	E _{pac.} , cm ⁻¹	
12720,5472	2 1 2	3 1 3	12813,7465	422	3 2 1	JK	$K_a K_c$	$E_{\scriptscriptstyle { m SKC}},{ m cm}^{-1}$	r.m.s., 10 ⁻³ см ⁻¹	N	$_{10^{-3}\text{cm}^{-1}}^{\delta,}$	[7]	Δ , cm ⁻¹
12720,3472	404	413	_"_	505	414	0	0.0	12767,1259	_	1	2,5	12766,7205	0,4053
12721,2192	643	642	12816,8857	413	312	1	0 1	12781,2144	3,53	3	-4,3	12780,8005	0,4141
12728,1255	634	633	12817,3020	533	432	1	11	12795,0320	2,24	2	-7,6	12794,6343	0,3975
12720,1233	110	211	12817,5020	532	431		10	12797,0437	3,21	3	_	12796,7760	0,2676
12730,8347	633	634	12817,0080	515	414	2	02	12809,1243	-	1	-14,3	12808,6972	0,4268
12731,7033	541	542	12819,4807	414	303		12	12820,9389	2,47	4	-36,1	12820,5610	0,3779
12735,0413	101	202	12819,5848	643	5 4 2		1 1	12827,7078	4,79	2	6,3	12827,2926	0,4150
12736,9029	111	212	12819,7789	5 2 4	423		2 1	12868,9975	2,12	2	1,7	12868,6219	0,3750
12738,3730	5 3 3	5 3 2	12819,9789	505	404		20	12869,2586	1,42	3	1,23	12868,8778	0,3809
12739,6175	5 3 2	5 3 3	12821,6832	817	726		03	12850,3312 12859,5276	1,64 0,93	2	-8,2 3,1	12849,9071 12859,1213	0,4238 0,4062
12742,3111	440	441	12821,8539	606	515		1 2	12873,1507	3,21	3	-1,6	12872,7246	0,4062
12745,3351	423	422	12822,9371	5 2 3	422		2 2	12911,1681	1,31	3	14,8	12910,7847	0,3828
12746,3279	4 3 2	4 3 1	12824,1165	634	5 3 3		2 1	12912,4295	3,09	4	11,0	12912,0414	0,3887
12746,6392	4 3 1	432	12824,3441	5 1 5	404		3 1	12985,4424	4,46	2	-8,2	12985,1068	0,3359
12748,7137	101	110	12824,5497	616	5 1 5		3 0	12985,4552	6,67	2	-3,1	12985,1236	0,3311
12751,1344	5 2 3	5 2 4	12824,8092	633	5 3 2	4	0.4	12904,2052	2,45	3	-7,1	12903,7797	0,4258
12751,6177	000	101	12824,9499	5 1 4	413	4	14	12910,8099	0,98	2	12,5	12910,3966	0,4131
12752,3956	3 3 1	3 3 0	12825,7815	606	5 0 5	4	1 3	12933,3468	4,72	3	0,1	12932,9160	0,4307
12752,4248	3 3 0	3 3 1	12826,2421	625	5 2 4		23	12967,1733	3,79	4	9,6	12966,7795	0,3936
12753,7653	422	423	12828,2117	707	616		22	12970,8092	2,02	2	5,3	12970,4087	0,4004
12754,1048	3 2 2	3 2 1	12828,4661	616	5 0 5		3 2	13042,0033	2,06	2	-6,0	13041,6631	0,3398
12754,7511	212	2 1 1	12829,3679	7 3 5	634		3 1	13042,1287	2,27	2	-6,0	13041,7843	0,3447
12757,0433 12759,7305	3 2 1 2 2 1	3 2 2 2 2 0	12829,7871 12830,4440	7 1 7 6 2 4	6 1 6 5 2 3		40	13144,6355	4,73	2	-0,6	13144,3690	0,2666
12760,3343	220	2 2 1	12830,5151	707	606		0 5	12970,1319 12974,4989	3,22	2 2	-5,0 8,7	12969,7109 12974,0855	0,4209
12762,5379	111	110	12831,1428	6 1 5	5 1 4		1 4	13007,9319	1,44 1,61	2	-2,5	13007,4912	0,4131 0,4404
12767,2369	110	111	12831,2312	726	625		24	13036,8177	3,07	2	8,9	13036,4174	0,4004
12769,5857 12771,9285	2 1 1 6 2 4	2 1 2 6 1 5	12832,0930 12832,9920	7 1 7 8 0 8	6 0 6 7 1 7		2 3	13044,7720	0,96	3	4,4	13044,3629	0,4092
12772,7615	312	3 1 3	12833,8797	818	717		3 3	13112,7855	2,71	3	-0,8	13112,4443	0,3408
12777,9519	4 1 3	3 2 2	12834,2731	808	707	5	3 2	13113,2847	1,13	3	-1,8	13112,9275	0,3574
12781,2188	101	000	12834,7930	827	726	5	4 1	13215,1234	1,21	2	11,8	13214,8410	0,2822
12781,5383 12781,8233	110	101	12835,1602 12835,5137	8 1 8 7 1 6	7 0 7 6 1 5	6	06	13047,7232	4,43	2	50,0	13047,3112	0,4121
12783,1962	413	404	12836,5902	725	624	6	16	13050,4133	1,19	2	8,7	13050,0106	0,4023
12785,9842	5 1 4	5 0 5	12836,3781	909	8 1 8		15	13096,3747	4,34	2	-2,6	13095,9294	0,4453
12791,1310	2 1 2	111	12836,4990	2 2 1	110		2 5	13119,8846	5,99	2	2,1	13119,4764	0,4082
12792,2027 12793,6161	3 0 3 2 0 2	2 1 2 1 0 1	12836,8447 12836,9694	919 928	8 1 8 8 2 7		2 4	13134,4373	1,58	2	-7,1	13134,0159	0,4219
12795,0101	111	000	12837,0625	909	808		3 4	13197,7857	3,39	2	-9,7	13197,4366	0,3496
12795,2066	2 1 1	110	12837,5413	919	808		3 3	13199,2186	0,54	2	-11,6	13198,8497	
12795,9679	3 2 1	3 1 2	12838,1977	8 1 7	7 1 6		43	13299,8256	1,91	2	-0,4	13299,5239	0,3018
12801,3997	3 1 3	2 1 2 2 2 1	12839,4486	220	111	7	0 7	13136,8286	1,22	2	-6,9	13136,4148	0,4131
12802,2423 12802,7338	3 2 2 6 1 5	524	12839,6437 12844,9819	8 2 6 3 2 2	7 2 5 2 1 1		1 7	13138,4053	2,48	2	1,2	13137,9959	0,4092
12803,0735	220	2 1 1	12848,3602	928	817		16	13198,0171	3,76	2	-8,5	13197,5652	0,4521
12803,1554	3 2 1	220	12850,7111	4 2 3	3 1 2	7	26	13216,1103	3,49	2	-5,2	13215,6969	0,4131
12803,8135	404	3 1 3	12851,3158	827	716	7	2 5	13239,5663	-	1	1,6	13239,1408	0,4258
12804,1597 12805,4342	3 0 3 2 1 2	202	12853,6066 12853,8311	7 2 6 5 2 4	6 1 5 4 1 3	7	3 5	13296,8768	5,1	2	1,5	13296,5349	0,3319
12806,9617	3 1 2	2 1 1	12854,3049	3 2 1	2 1 2	8	0.8	13237,4361	1,53	2	-7,7	13237,0428	0,3936
12808,9775	4 3 2	3 3 1	12854,6544	625	5 1 4	8	18	13238,3235	1,86	2	-1,2	13237,9319	0,3916
12810,4180	414	3 1 3	12876,1688	3 3 1	220	8	17	13312,1130	4,45	2	1,8	13311,6632	0,498
12810,7975 12811,7810	423	4 1 4 3 2 2	12876,5356 12886,7420	3 3 0 4 3 1	2 2 1 3 2 2	8	2 7	13325,2269	6,55	2	-21,0	13324,8104	0,4160
12812,7936	541	440	12888,3894	5 2 3	414	8	26	13359,7672	-	1	-13,6	13359,3265	0,4414
12812,8783	4 0 4	3 0 3	12890,9482	5 3 3	4 2 2	9	09	13349,5818	3,46	2	-9,8	13349,1925	0,3896
12813,1377	716	625	12893,3220	7 3 5	624	9	19	13350,0545	2,63	2	7,5	13349,6646	0,3896
12813,3554	3 1 3	202	12896,2428 12911,6071	5 3 2 4 4 0	4 2 3 3 3 1	9	28	13446,9196	3,66	2	-9,1	13446,5110	0,4086
	I	I	12711,00/1	1 770	1 331		Į.		ı l		i	1	ı

Решение обратной задачи по определению вращательных и центробежных постоянных проводилось на основе гамильтониана Уотсона, что соответствует модели изолированного колебательного состояния:

$$\begin{split} H &= E_{\mathrm{v}} + \left(A^{\mathrm{v}} - \frac{B^{\mathrm{v}} + C^{\mathrm{v}}}{2}\right) J_{z}^{2} + \frac{B^{\mathrm{v}} + C^{\mathrm{v}}}{2} J^{2} + \frac{B^{\mathrm{v}} - C^{\mathrm{v}}}{2} J_{xy}^{2} - \\ &- \Delta_{k}^{\mathrm{v}} J_{z}^{4} - \Delta_{jk}^{\mathrm{v}} J_{z}^{2} J^{2} - \Delta_{j}^{\mathrm{v}} J^{4} - \delta_{k}^{\mathrm{v}} \left\{J_{z}^{2}, J_{xy}^{2}\right\} - 2\delta_{j}^{\mathrm{v}} J_{xy}^{2} J^{2} + \\ &+ H_{k}^{\mathrm{v}} J_{z}^{6} + H_{kj}^{\mathrm{v}} J_{z}^{4} J^{2} + \dots; \\ &J^{2} = J_{x}^{2} + J_{y}^{2} + J_{z}^{2}, \ J_{xy}^{2} = J_{x}^{2} - J_{y}^{2}; \left\{A, B\right\} = AB + BA \ , \end{split}$$

где J_x, J_y и J_z — операторы углового момента; E_{ν} — колебательная энергия; A, B, C — вращательные, Δ_k, Δ_{jk} , Δ_{j} , δ_k , δ_j ... — центробежные постоянные.

Некоторые уровни оказались возмущенными и были исключены из процедуры подгонки параметров гамильтониана (например, уровень [110]). Мы предполагаем, что эти уровни возмущены за счет сильных резонансных взаимодействий состояния (500) с состояниями (420), (340), (260), (071), которые не были учтены в наших расчетах. Полученные в результате решения обратной задачи параметры гамильтониана, а также 68%-е доверительные интервалы для них приведены в табл. 3.

Из табл. 2 видно, что согласие вычисленных и найденных из спектра энергетических уровней (5-й столбец таблицы) вполне удовлетворительное — стандартное отклонение составляет только $0,013 \, \mathrm{cm}^{-1}$. В целом воспроизведение экспериментальных уровней характеризуется следующими соотношениями:

 $\label{eq:Tadala} T\ a\ б\ \pi\ u\ ц\ a\ \ 3$ Центр полосы, вращательные и центробежные постоянные колебательного состояния (500) молекулы $HD^{16}O,\ cm^{-1}$

Параметр	Величина	Параметр	Величина		
E	12767,1201(60)	$\Delta_{ik}10^3$	2,299(30)		
A	22,0137(17)	$\Delta_i 10^4$	3,275(28)		
B	8,18388(57)	$\delta_k 10^3$	2,465(43)		
C	5,90020(46)	$\delta_i 10^4$	1,018(28)		
$\Delta_k 10^2$	1,1502(94)	$H_{k}10^{4}$	1,88		

 $\delta < 0{,}005 \quad 23{,}7\%$ всех уровней ,

 $0,005 \le \delta < 0,01$ 25,4%,

 $0,010 \le \delta < 0,03$ 37,3%,

 $0.030 \le \delta < 0.05$ 13.6% , где $\delta = |E_{
m pac} - E_{
m skc}|$.

Центр полосы определен по двум переходам на уровень [000] и составил v_o = 12767,1259 \pm 0,0060 см $^{-1}$.

В последнее время появились высокоточные расчеты Партриджа и Швенке [7] энергетической структуры и вероятностей переходов для изотопических модификаций воды. Интересно провести сравнение колебательно-вращательных уровней энергии состояния (500), полученных в данной работе, с уровнями, предсказанными в [7]. Вычисления в [7] проведены вариационным методом на основе расчета ab initio функции потенциальной энергии с ее дальнейшим уточнением по данным банка спектральных данных HITRAN-92. В [7] сообщается, что разность между данными по положению центров линий, представленными в атласе HITRAN и рассчитанными авторами, составляла в среднем 0,021 см⁻¹. В табл. 2 в последнем столбце приведены разности между колебательно-вращательными уровнями, рассчитанными в [7] и определенными нами из спектра. Для ряда уровней эта разность достигает 0.4 cm^{-1} , причем расчетные значения [7] превышают экспериментальные уровни, уменьшаясь с ростом квантового числа K_a до 0,2 см $^{-1}$ (при K_a = 4). Можно предположить, что наибольший вклад в ошибку данных [7] для состояния (500) $\mathrm{HD}^{16}\mathrm{O}$ вносит ошибка расчета колебательной энергии (нулевой уровень J=0), поэтому введение соответствующей поправки к вращательным подуровням энергии (J > 0) дает вполне удовлетворительное согласие с экспериментальными данными. Представленные в данной статье экспериментальные уровни энергии могут быть использованы для уточнения функции потенциальной энергии, представленной в [7].

Работа поддержана Российским фондом фундаментальных исследований (гранты N 96-03-33801 и N 96-03-10043).

Авторы выражают благодарность О.В. Науменко и А.Д. Быкову за помощь в расчетах и полезные обсуждения результатов работы. Для идентификации линий использовалась экспертная система, разработанная А.П. Щербаковым.

- 1. Bykov A.D. et al. // J. Mol. Spectrosc. 1992. V. 153. P. 197-207.
- Fair J.R., Votava O., Nesbitt D.J. // J. Chem. Phys. 1998. V. 108. N 1. P. 72–80.
- 3. Зуев В.Е., Макушкин Ю.С., Пономарев Ю.Н. Современные проблемы атмосферной оптики. Спектроскопия атмосферы. Т. 3. Л.: Гидрометеоиздат, 1987. 247 с.
- 4. Lazarev V.V. et al. // SPIE. 1996. V. 3090. P. 245–248.
- Щербаков А.П. // Оптика атмосферы и океана. 1997. Т. 10. N 8. С. 947–958.
- 6. Flaud J.-M. et al. // J. Mol. Spectrosc. 1998. V. 185. P. 211-221.
- Partridge H., Schwenke D.W. //J. Chem. Phys. 1997. V. 106. N 11. P. 4618–4639.

Институт оптики атмосферы СО РАН, Томск Университит науки и технологии Китая, г. Хефей Поступила в редакцию 4 февраля 1998 г.

V.V. Lazarev, T.M. Petrova, L.N. Sinitsa, Qing-Shi Zhu, Jia-Xiang Han, Lu-Yuan Hao. Absorption Spectrum of HD¹⁶O in 0.7 μm Region.

The absorption spectrum of $HD^{16}O$ has been investigated in $12700-12900~cm^{-1}$ region by the photo-acoustic spectrometer based on the Ti-Sapphire at the threshold absorption sensitivity $10^{-8}~cm^{-1}$. The absorption lines of the $5v_1$ band of $HD^{16}O$ were assigned for the first time. 54 energy levels of the highly excited vibrational state (500) have been obtained with the uncertainty from $0.0003~to~0.0066~cm^{-1}$. A set of the rotational and centrifugal constants has been determined.