Разработан интеллектуальный алгоритм восстановления средней концентрации метана над заболоченными территориями на основании измерений трассового Фурье-спектрометра в инфракрасном спектральном диапазоне. Робастный алгоритм на основе беспроизводного нелинейного метода наименьших квадратов дает точные значения концентрации метана при любых атмосферных условиях. Для точного определения концентрации метана в присутствии других поглощающих газов и особенно воды при 100% влажности используются 58 спектральных каналов. Тестирование проводилось для смесей первых 12 газов из базы данных HITRAN при нормальных атмосферных условиях. В описании алгоритма особое внимание уделено его применению для анализа потоков метана над заболоченными территориями в северном полушарии.
1. D.J. Wuebbles and K. Hayhoe, Atmospheric methane and global change. Earth Sci. Rev. 57, 177-210 (2002).
2. IPCC, Climate Change 1995: The Science of Climate Change. Cambridge Univ. Press, 1996.
3. D. Etheridge L. Steele, R. Francey, and R. Langenfelds, Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 103, 15979-15993 (1998).
4. J. Petit, J. Jouzel, D. Raynaud, N. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. Kotlyakov, M. Legrand, V. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436 (1999).
5. J. Chappellaz, I.Y. Fung, and A.M. Thompson, The atmospheric CH4 increase since the Last Glacial Maximum. Tellus. 45B, 228-241 (1993).
6. J. Chappellaz, T. Blunier, D. Raynaud, J. Barnola, J. Schwander, and B. Stauffer, Synchronous changes in atmospheric CH4 and Greenland climate between 40-kyr and 8-kyr BP. Nature 366, 443-445 (1993).
7. M. Khalil, Atmospheric methane: an introduction, p. 1-8. M. Khalil (ed.), Atmospheric Methane: Its Role in the Global Environment. Springer-Verlag, New York, NY, 2000.
8. E. Matthews and I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1: 61-86 (1987).
9. S.C. Moosavi and P.M. Crill, CH4 oxidation by tundra wetlands as measured by a selective inhibitor technique, J. Geophys. Res. 103, 29093-29106 (1998).
10. S.C. Moosavi and P.M. Crill, Controls on CH4 and CO2 emissions along two moisture gradients in the Canadian boreal zone, J. Geophys. Res. 102, 29261-29277 (1997).
11. S. Oberbauer, G. Starr, and E. Pop, Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussock tundra in Alaska, J. Geophys. Res. 103, 29075-29082 (1998).
12. A. Van den Pol-Van Dasselaar, M.L. Van Beusichem, and O. Oenema, Methane emissions from wet grasslands on peat soil in a nature preserve, Biogeochemistry 444, 205-220 (1999).
13. C. Duenas, M.C. Fernandez, and J. Carretero, Methane uptake in soils of southern Spain estimated by two different techniques: static chamber and 222radon flux and soil air concentration profiles, Atmos. Environ. 30, 545-552 (1996).
14. J.B. Moncrieff, I.J. Beverland, and D.H. Oneill, Controls on trace gas exchange observed by a conditional sampling method, Atmos. Environ. 32, 3265-3274 (1998).
15. L.S. Chasar, J.P. Chanton, P.H. Glaser, and D.I. Siegel, Methane Concentration and Stable Isotope Distribution as Evidence of Rhizospheric Processes: Comparison of a Fen and Bog in the Glacial Lake Agassiz Peatland Complex. Ann. Bot. 86(3): 655-663 (2000).
16. D.W.T. Griffith, R. Leuning, O.T. Denmead, I.M. Jamie, Air-land exchanges of CO2, CH4, and N2O measured by FTIR spectrometry and micrometeorological techniques, Atmos. Environ. 36, 1833-1842 (2002).
17. A.C. Drescher, D.Y. Park, M.G. Yost, A.J. Gadgil, S.P. Levine, W.W. Nazaroff, Stationary and time-dependent tracer gas concentration profiles using open path FTIR remote sensing and SBFM computed tomography. Atmos. Environ. 31, 727-740 (1997).
18. Fourier Spectroscopy, An Introduction, Ernest V. Loewenstein, Tutorial Paper Number 1, Aspen International Conference on Fourier Spectroscopy, George A. Vanasse, A.T. Stair, Jr., Dorain J. Baker, Editors, Government Document Number AFCRL-71-0019 (1970).
19. Final Report on the First Flight of the ATMOS Instrument During the Spacelab 3 Mission, April 29 Through May 6, 1985, October 1, 1987, Crofton B. Farmer, Odell F. Raper, Fred G. O'Callaghan, JPL Publication 87-32.
20. J.C. Brasunas, V.G. Kunde, R.A. Hanel, D. Walser, Balloon-borne cryogenic spectrometer for measurement of lower stratospheric trace constituents, NASA, Goddard Space Flight Center; L.W. Herath, Science Systems and Applications, Inc.; H.L. Buijs, J.N. Berube, J. McKinnon, Bomem, Inc., SPIE 619, Cryogenic Optical Systems and Instruments II, 80 (1986).
21. Virgil G. Kunde, et al., Infrared spectroscopy of the lower stratosphere with balloon-borne cryogenic Fourier spectrometer, App. Opt. 26, No. 3, 545 (1987).
22. H. Sakai, et al., Measurement of atmospheric emission using a balloon-borne cryogenic Fourier spectrometer, SPIE 289, 196 (1981).
23. F. Murcray et al., Liquid Nitrogen-Cooled Fourier Transform Spectrometer System for Measuring Atmospheric Emission at High Altitudes, Journal of Atmospheric and Oceanic Technology 1, 351 (1984).
24. D. Murcray, et al., Measurements of Atmospheric Emission at High Spectral Resolution, Journal of the Meteorological Society of Japan 63, 320 (1985).
25. J.M. Theriault, et al., Temperature dependence of atmospheric transmittance in the 2.8-5.5 µm region, SPIE 1115, 295 (1989).
26. J.-M. Theriault, et al., Atmospheric transmission in the 2,8-5.5 µm region: description of the Fourier interferometer transmissometer and typical result at low temperatures, Appl. Opt. 29, 3654 (1990).
27. Pierre L. Roney, et al., Transmission window near 2400 cm-1: an experimental and modeling study, Appl. Opt. 30, 1995 (1991).
28. J.-M. Theriault, et al., Analysis of the FASCODE model and its H2O continuum based on long-path atmospheric transmission measurements in the 4.5-11.5 µm region, Appl. Opt. 33, 323 (1994).
29. James Gosz, et. аl., Field Testing Long-Path Fourier Transform Infrared (FTIR) Spectroscopy for Measurement of Atmospheric Gas Concentrations, Remote Sens. Environ. 32, 103-110 (1990).
30. Renate Van Allen, Frank J. Murcray, and Xu Liu, Mid-infrared measurements of the atmospheric emission over the South Pole using a radiometrically calibrated Fourier transform spectrometer, Appl. Opt. 35, 1523 (1996).
31. J.R. Olson, J. Van Allen, P.F. Fogal, F.J. Murcray, and A. Goldman, Calibrated 0.1 cm-1 IR emission spectra from 80 degrees N, Appl. Opt. 35, 2797 (1996).
32. M.L. Ralston and R.I. Jennrich, Dud, A Derivative-Free Algorithm for Nonlinear Least Squares, Technometrics 20, 7 (1977).
33. E.L. Bradley, The equivalence of maximum likelihood and weighted least squares estimates in the exponential family, J. Amer. Statist. Assn. 68, 199 (1973).
34. A. Charnes, E.L. Frome, and P.L. Yu, The equivalence of generalized least squares and maximum likelihood estimation in the exponential family, J. Amer. Statist. Assn. 71, 169 (1976).
35. R.I. Jennrich and R.H. Moore, Maximum likelihood estimation by means of nonlinear least squares, Amer. Statist. Assn.Proceedings of the Statist. Computing Session, p. 57 (1975).
36. J.A. Nelder and R.W M. Wedderburn, Generalized linear models, J. Roy. Statist. Soc. A 135, 370 (1972).
37. A.E. Beaton and J.W. Tukey, The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data, Technometrics 16, 147 (1974).
38. R.L. Hawkins, Phyllips Laboratory, USAF, private communication, 1995.
39. R.L. Hawkins, Whole-Band Analysis of Infrared Spectra of Nitrous Oxide Broadened by Nitrogen, Oxygen, and Air, Thesis, Ohio State University, 1982.
40. J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics, John Wiley and Son, New York, NY, 1997.
41. T. Friborg, T.R. Christensen, B.U. Hansen, C. Nordstroem, and H. Soegaard, Trace gas exchange in a high-arctic valley, 2, Landscape CH4 fluxes measured and modeled using eddy correlation data [CH4]. Global Biogeochem. Cycles, 14, 715-724 (2000).
42. K. Bartlett and R. Harriss, Review and assessment of methane emissions from wetlands. Chemosphere 26, 261-230 (1993).
43. J. Bubier, A. Costello, T.R. Moore, N.T. Roulet, and K. Savage, Microtopography and methane flux in boreal peatlands, northern Ontario, Canada. Can. J. Bot. 71(8), 1056-1063 (1993).
44. R.C. Harriss, E. Gorham, D.L. Sebacher, K.B. Bartlett, and P.A. Flebbe, Methane flux from northern peatlands. Nature 315, 652-653 (1985).
45. T. Nakano, S. Kuniyoshi, and M. Fukuda, Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmos. Environ. 34(8), 1205-1213 (2000).
46. M.R. Turetsky, R.K. Wieder, and D.H. Vitt, Boreal peatland C fluxes under varying permafrost regimes. Soil Biology & Biochemistry 34(7), 907-912 (2002).
47. J.M. Waddington and N.T. Roulet, Carbon balance of a boreal patterned peatland. Glob Change Biol. 6(1), 87-97 (2000).
48. S. Fan, S.C. Wofsy, P. Bakwin, D. Jacob, S. Anderson, P. Kebabian, J. McManus, C. Kolb, and D. Fitzjarrald, Micrometeorlogical measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. J. Geophys. Res. 97(D15), 16,627-16,643 (1992).
49. R. McMillen, A basic program for eddy corrlelation in non-simple terrain. ERL ARL-147, NOAA, Silver Spring, MD, 1986.
50. M.E. Hines, Emissions of sulfur gases from wetlands. D.D. Adams, P.M. Crill and S.P. Seitzinger (Editors), Cycling of Reduced Gases in the Hydrosphere. Mitt. Internat. Verein. Limnol. 25:153-161, Stuttgart, 1996.
51. C. Paludan and G. Blicher Mathiesen, Losses of inorganic carbon and nitrous oxide from a temperate freshwater wetland in relation to nitrate loading. Biogeochemistry, 35(2), 305-326 (1996).
52. P.A. Matson, C. Volkmann, K. Coppinger, and W.A. Reiners, Annual Nitrous Oxide Flux and Soil Nitrogen Characteristics in Sagebrush Steppe Ecosystems. Biogeochemistry 14(1), 1-12 (1991).
53. P.M. Vitousek, J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, and D.G. Tilman, Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7(3), 737-750 (1997).
54. J.S. Simmons, L. Klemedtsson, H. Hultberg, and M.E. Hines, Consumption of carbonyl sulfide by coniferous boreal forest soils. J. Geophys. Res. 104, 11,569-11,576 (1999).