Экспериментально исследуется влияние ветра и атмосферной турбулентности на вихревой след за самолетом. Для измерения параметров самолетных вихрей, ветра и турбулентности используется 2-микронный когерентный доплеровский лидар. Представлены результаты лидарных измерений параметров самолетных вихрей при различных скоростях ветра и уровнях турбулентности. Впервые из данных натурного эксперимента получена эмпирическая зависимость времени жизни самолетного вихря от скорости диссипации энергии атмосферной турбулентности.
когерентный лидар, ветер, турбулентность, самолетные вихри
1. Gerz T., Holzapfel F., Darracq D. Commercial aircraft wake vortices // Progr. Aerospace Sci. 2002. V. 38. N 3. P. 181-208.
2. Crow S.C. Stability theory for a pair of trailing vortices // AIAA J. 1970. V. 8. N 12. P. 2172-2179.
3. Brashears M.R., Hallock J.N. Aircraft wake vortex transport model // J. of Aircraft. 1974. V. 11. N 5. P. 256-272.
4. Crow S.C., Bate E.R., Jr. Lifespan of trailing vortices in a turbulent atmosphere // J. of Aircraft. 1976. V. 13. N 7. P. 476-482.
5. Hecht A.M., Bilanin A.J., Hirsh J.E., Snedeker R.S. Turbulent vortices in stratified fluids // AIAA J. 1980. V. 18. N 7. P. 738-746.
6. Greene G.C. An approximate model of vortex decay in the atmosphere // J. of Aircraft. 1986. V. 23. N 7. P. 566-573.
7. Sarpkaya T., Daly J.J. Effect of ambient turbulence on trailing vortices // J. of Aircraft. 1987. V. 24. N 6. P. 399-403.
8. Robins R.E., Delisi D.P. Numerical study of vertical shear and stratification effect on the evolution of a vortex pair // AIAA J. 1990. V. 28. N 4. P. 661-669.
9. Schilling V., Siano S., Elting D. Dispersion of aircraft emissions due to wake vortices in stratified shear flows: A two-dimensional numerical study // Geophys. Res. D. 1996. V. 101. N 15. P. 20,965-20,974.
10. Hofbauer T., Gerz T. Effect of nonlinear shear on the dynamics of a counter-rotating vortex pair // Proc. of the First International Symposium for Turbulence and Shear Flow Phenomena. Santa Barbara. USA. 12-15 September 1999. 6 p.
11. Holzapfel F. Probabilistic two-phase wake vortex decay and transport model // J. of Aircraft. 2003. V. 40. N 2. P. 323-331.
12. Holzapfel F., Hofbauer T., Darracq D., Moet H., Garnier F., Ferreira Gago C. Analysis of wake vortex decay mechanisms in the atmosphere // Aerospace Sci. and Technol. 2003. V. 7. N 4. P. 263-275.
13. Holzapfel F., Robins R.E. Probabilistic two-phase aircraft wake-vortex model: Application and assessment // J. of Aircraft. 2004. V. 41. N 1. P. 1-10.
14. Kopp F., Schwiesow R.L., Werner Ch. Remote measurements of boundary layer wind profiles using a cw Doppler lidar // J. of Climate Appl. Meteorol. 1984. V. 23. N 1. P. 148-158.
15. Hall F.F., Huffaker R.M., Hardesty R.M., Jackson M.E., Lawrence T.R., Post M.J., Richter R.A., Weber B.F. Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar // Appl. Opt. 1984. V. 23. N 15. P. 2503-2506.
16. Hawley J.G., Tang R., Henderson S.W., Hale C.P., Kavaya M.J., Moerder D. Coherent launch-site atmospheric wind sounder: Theory and experiment // Appl. Opt. 1993. V. 32. N 24. P. 4557-4568.
17. Frehlich R., Hannon S.M., Henderson S.W. Performance of a 2-?m coherent Doppler lidar for wind measurements // J. Atmos. and Ocean. Technol. 1994. V. 11. N 6. P. 1517-1528.
18. Werner Ch., Flamant P. H., Reitebuch O., Kopp F., Streicher J., Rahm S., Nagel E., Klier M., Herrmann H., Loth C., Delville P., Drobinski Ph., Romand B., Boitel Ch., Oh D., Lopez M., Meissonner M., Bruneau D., Dabas A. Wind infrared Doppler lidar instrument // Opt. Eng. 2001. V. 40. N 1. P. 115-125.
19. Smalikho I.N. Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar // J. Atmos. and Ocean. Technol. 2003. V. 20. N 2. P. 276-291.
20. Gal-Chen T., Xu M., Eberhard W.L. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data // Geophys. Res. D. 1992. V. 97. N 17. P. 18,409-18,423.
21. Banakh V.A., Smalikho I.N., Kopp F., Werner Ch. Measurements of turbulent energy dissipation rate with a cw Doppler lidar in the atmospheric boundary layer // J. Atmos. and Ocean. Technol. 1999. V. 16. N 8. P. 1044-1061.
22. Frehlich R., Hannon S.M., Henderson S.W. Coherent Doppler lidar measurements of wind field statistics // Boundary-Layer Meteorol. 1998. V. 86. N 1. P. 223-256.
23. Frehlich R., Cornman L. Estimating spatial velocity statistics with coherent Doppler lidar // J. Atmos. and Ocean. Technol. 2002. V. 19. N 3. P. 355-366.
24. Smalikho I.N., Kopp F., Rahm S. Measurement of atmospheric turbulence by 2-?m Doppler lidar // J. Atmos. and Ocean. Technol. 2005. V. 22. N 11. P. 1733-1747.
25. Hannon S.M., Thomson J.A. Aircraft wake vortex detection and measurement with pulsed solid-state cohe-
rent laser radar // J. Mod. Opt. 1994. V. 41. N 11. P. 2175-2196.
26. Constant G., Foord R., Forrester P.A., Vaughan J.M. Coherent laser radar and the problem of aircraft wake vortices // J. Mod. Opt. 1994. V. 41. N 11. P. 2153-2173.
27. Brockman P.B., Barker C., Koch G.J., Nguyen D.P.C., Britt C.L. Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in the terminal area // Proc. 10th Coherent Laser Radar Technology and Applications Conf. Mount Hood, OR. 1999. P. 12-15.
28. Kopp F. Wake-vortex characteristics of military-type aircraft measured at airport Oberpfaffenhofen using the DLR laser Doppler anemometer // Aerospace Sci. and Technol. 1999. V. 3. N 4. P. 191-199.
29. Harris M., Young R.I., Kopp F., Dolfi A., Cariou J.-P. Wake vortex detection and monitoring // Aerospace Sci. and Technol. 2002. V. 6. N 5. P. 325-331.
30. Kopp F., Smalikho I.N., Rahm S., Dolfi A., Cariou J.-P., Harris M., Young R.I., Weekes K., Gordon N. Characterization of aircraft wake vortices by multiple-lidar triangulation // AIAA J. 2003. V. 41. N 6. P. 1081-1088.
31. Kopp F., Rahm S., Smalikho I.N. Characterization of aircraft wake vortices by 2-?m pulsed Doppler lidar // J. Atmos. and Ocean. Technol. 2004. V. 21. N 2. P. 194-206.
32. Kopp F., Rahm S., Smalikho I.N., Dolfi A., Cariou J.-P., Harris M., Young R.I. Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars // J. of Aircraft. 2005. V. 42. N 7. P. 916-923.
33. Rahm S., Smalikho I.N., Kopp F. Characterization of aircraft wake vortices by airborne coherent Doppler lidar // J. of Aircraft. 2007. V. 44. N 3. P. 799-805.
34. Rahm S., Smalikho I.N. Aircraft wake vortex measurement with airborne coherent Doppler lidar // J. of Aircraft. 2008. V. 45. N 4. P. 1148-1155.
35. Henderson S.W., Suni P.J.M., Hale C.P., Hannon S.M., Magee J.R., Bruns D.L., Yuen E.H. Coherent laser radar at 2 ?m using solid-state lasers // IEEE Trans. Geosci. and Remote Sens. 1993. V. 31. N 1. P. 4-15.
36. Смалихо И.Н., Рам Ш. Измерения когерентными доплеровскими лидарами параметров самолетных вихрей // Оптика атмосф. и океана. 2008. Т. 21. № 11. С. 977-992.
37. Holzapfel F., Gerz T., Kopp F., Stumpf E., Harris M., Young R.I., Dolfi A. Strategies for Circulation Evaluation of Aircraft Wake Vortices Measured by Lidar // J. Atmos. and Ocean. Technol. 2003. V. 20. N 8. P. 1183-1195.
38. Frehlich R. Estimation of velocity error for Doppler lidar measurements // J. Atmos. and Ocean. Technol. 2001. V. 18. N 10. P. 1628-1639.
39. Holzapfel F., Gerz T., Baumann R. The turbulent decay of trailing vortex pairs in stably stratified environments // Aerospace Sci. and Technol. 2001. V. 5. N 2. P. 95-108.