Том 23, номер 04, статья № 1

pdf Пригарин С. М., Оппель У. Г. Monte Carlo simulation of angular characteristics for polarized radiation in water-drop and crystal clouds. // Оптика атмосферы и океана. 2010. Т. 23. № 04. С. 243-247.
Скопировать ссылку в буфер обмена
Аннотация:

In the paper we present the results of computational experiments aimed to define the angular distributions for the polarized radiation scattered in a cloudy layer. The angular distributions for Stokes parameters were computed by Monte Carlo method for different optical models of water-drop and crystal clouds. The ulterior objective of the research is to develop effective techniques to study the particles shape and size by measuring angular characteristics of the scattered radiation emanating from clouds.

Ключевые слова:

polarized radiation transfer, water-drop and crystal clouds, Monte Carlo simulation, angular distributions, particle shape and size

Список литературы:

1. S. Chandrasekhar, Radiative Transfer. Dover Publications, New York, 1960.
2. G.I. Marchuk, G.A. Mikhailov, M.A. Nazaraliev, R.A. Darbinian, B.A. Kargin, and B.S. Elepov. Monte Carlo Methods in Atmosperic Optics, Springer-Verlag, Berlin, 1989.
3. A. Ishimaru, Wave Propagation and Scattering in Random Media. Academic Press, New York, 1978.
4. U.G. Oppel, G. Czerwinski, Multiple scattering LIDAR equation including polarization and change of wavelength. Proc. SPIE, V. 3571, P. 14-25.
5. T.A. Sushkevich, Mathematical Models of Radiation Transfer. BINOM, Moscow, 2005 [in Russian].
6. U.G. Oppel, M. Wengenmayer, A new approach to simulation of lidar multiple scattering returns and time resolved diffusion patterns of a laser beam including polarization. Fourteenth International Workshop On Multiple Scattering Lidar Experiments (MUSCLE XIV), Universite Laval, Quebec, Canada, 4-7 October 2005. Defence R&D Canada, Valcartier, 2006, P. 57-68.
7. M. Wengenmayer, Monte Carlo methods for calculating polarized CCD-LIDAR returns from in-homogenous clouds. PhD thesis, Munich, 2008.
8. C.F. Bohren, and D.R. Huffman, Absorption and Scattering of Light by Small Particles. Wiley, New York, 1983.
9. H.C. van de Hulst, Light Scattering by Small Particles. Wiley, New York, 1957.
10. G.W. Kattawar, G.N. Plass, Radiance and polarization of multiple scattered light from haze and clouds, Applied Optics, 1968, V. 7, No. 8, P. 1519-1527.
11. G.A. Mikhailov, M.A. Nazaraliev, Izvestiya RAN. Fizika atmosfery i okeana, V. 7 (1971), No. 4, P. 385-395 [in Russian].
12. M.J. Rakovic, G.W. Kattawar, M. Mehrubeoglu, B.D. Cameron, L.V. Wang, S. Rastegar, G.L. Cote, Light backscattering polarization patterns from turbid media: theory and experiment, Applied Optics, V. 38 (1999), No. 15, P. 3399-3408.
13. U.G. Oppel, H. Krasting, Retrieval of microphysical parameters from return signals of airborne and space-based LIDARs. In: Wolf, J.-P. (ed.): Lidar Atmospheric Monitoring (Proc. European Symposium on Environmental Sensing III, 16-20 June 1997, Fairgrounds Munich, GFR. (EnviroSense'97; LASER'97). Proc. SPIE EUROPTO Series, V. 3104, 1997, P. 135-144.
14. S. Bartel, A.H. Hielscher, Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media, Applied Optics, V. 39 (2000), No. 10, P. 1580-1588.
15. J.C. Ramella-Roman, S.A. Prahl, S.L. Jacques, Three Monte Carlo programs of polarized light transport into scattering media: Part I. Optics Express, 2005, V. 13, No. 12, P. 4420-4438.
16. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions, American Elsevier, New York, 1969, 290 pp.
17. J. Ding, L. Xu, Light scattering characteristics of small ice circular cylinders in visible, 1.38-mm, and some infrared wavelengths, Opt. Eng., V. 41 (2002), No. 9, P. 2252-2266.