Том 26, номер 10, статья № 2

pdf Du P., Lin D., Lu Zh. ASE pulse compression using optical breakdown clipping technology in liquid medium. // Оптика атмосферы и океана. 2013. Т. 26. № 10. С. 838-841.
Скопировать ссылку в буфер обмена

Using the method of optical breakdown clipping on Krypton Fluoride excimer laser, ASE (Amplified Spontaneous Emission) pulse compression technology was studied in this paper. And the liquid medium breakdown depth on the ASE pulse compression effect was analyzed. The initial ASE pulse width was 16.8 ns; the shortest 8.4 ns ASE pulse was obtained in the experiment. The auxiliary beam induced luminescence breakdown was used to study on the law of optical breakdown clipping, and the short 7.3 ns ASE pulse was got. These experimental results proved that the auxiliary beams are useful to accelerating the plasma generation rate and duration. The results ASE pulse compression can be controlled in some degree.

Ключевые слова:

optical breakdown; excimer laser; pulse compression

Список литературы:

1. Sethian J.D., Friedman M., Giuliani J.L., Lehmberg R.H., Obenschain S.P., Kepple P., Wolford M., Hegeler F., Swanekamp S.B., Weidenheimer D., Welch D., Rose D.V., Searles S. Electron beam pumped KrF lasers for fusion energy // Phys. Plasmas. 2003. V. 10. P. 2142-2146.
2. Tabak M., Hammer I.G., Linaky M.E. Development of high power laser system for laser fusion research // Phys. Plasmas. 1994. V. 47. P. 1626-1628.
3. Perkins L.J., Betti R., La Fortune K.N., Williams W.H. Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility // Phys. Rev. Lett. 2009. V. 103. P. 045004.
4. Schmitt J., Bates J.W., Obenschain S.P., Zalesak S.T., Fyfe D.E. Shock Ignition target design for inertial fusion energy // Phys. Plasmas. 2010. V. 17. P. 042701.
5. Ribeyre X., Schurtz G., Lafon M., Galera S., Weber S. Shock ignition: an alternative scheme for HiPER // Plasma Phys. Control. Fusion. 2009. V. 51. P. 015013.
6. Atzeni S. Laser driven inertial fusion: the physical basis of current and recently proposed ignition experiments // Plasma Phys. Control. Fusion. 2009. V. 51. P. 124029.
7. Allen L., Peters G.I. Amplified spontaneous emission III. Intensity and saturation // J. Phys. A. Gen. Phys. 1971. V. 4. P. 564-573.
8. Peters G.I., Allen L. Amplified spontaneous emission. IV. Beamdivergence and spatial coherence // J. Phys. A. Gen. Phys. 1972. V. 5. P. 546-554.
9. Eiichi Takahashi, Losev L.L., Yuji Matsumoto, Isao Okuda, Isao Matsushima, Susumu Kato, Hirotaka Nakamurac, Kenji Kuwaharad, Yoshiro Owadano. KrF laser picosecond pulse source by stimulated scattering processes // Opt. Commun. 2003. V. 215. P. 163-167.
10. Eiichi Takahashi, Losev L.L., Yuji Matsumoto, Isao Okuda, Susumu Kato, Tatsuya Aota, Yoshiro Owadano. 1 ps, 3 mJ KrF laser pulses generated using stimulated Raman scattering and fast Pockels cell // Opt. Commun. 2005. V. 247. P. 149-152.
11. Szatmari S., Schafer F.P. Simplified laser system for the generation of 60 fs pulses at 248 nm // Opt. Commun. 1988. V. 68. P. 196-202.
12. Christov C.G., Tomov I.V., Chaltakov I.V. Shorting of excimer laser pulses with saturable absorbers // Opt. Commun. 1984. V. 52. P. 211-214.