Том 26, номер 10, статья № 9

pdf Du P., Lin D., Lu Zh. The experimental study of the KrF excimer laser ASE pulse compression by the way of quenching method. // Оптика атмосферы и океана. 2013. Т. 26. № 10. С. 867-870.
Скопировать ссылку в буфер обмена
Аннотация:

The ASE (Amplified Spontaneous Emission) pulses, output of the transversely excited atmosphere pumped KrF excimer laser, was compressed experimental by the way of laser oscillation quenching. The effect of mirror position and diaphragm aperture on the pulses compression is discussed in this paper. The experimental results show that, when the angle of the mirror relative to the optical axis is 3.0 mrad and the diaphragm aperture is 4.0 mm, the pulse compression effect is best, and the ideal waveform can be obtain. For the original 12.5 ns pulse, output of the discharge pumped KrF excimer laser, when using the way of laser oscillation quenching to compressed, it can be got the best results of 5.1 ns.

Ключевые слова:

excimer laser, pulse compression, laser oscillation quenching, ICF

Список литературы:

1. Partanen J.P., Shaw M.J. High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and application // J. Opt. Soc. Amer. B. 1986. V. 3. P. 1374-1386.
2. Preston S.G., Blyth W.J., Zepf K.M.W. et al. Feasibility studies of the optically-ionized recombination XUV laser schemes on the Spite KrF CPA laser system // Central Laser Facility (CLF), Rutherford Appleton Laboratory (RAL) Annual Report. 1994. V. 95. P. 38-39.
3. Obenschain S.P., Bodner S.E., Colombant D. et al. The NIKE KrF laser facility: Performance and initial target experiments // Phys. Plasmas. 1996. V. 3. P. 2098-2107.
4. Owadano Y., Okuda I., Matsumoto Y. et al. Performance of the ASHURA KrF laser and its upgrading plan // Laser and Particle Beams. 1993. V. 11. P. 347-351.
5. Sethian J.D., Friedman M., Giuliani J.L., Lehmberg R.H., Obenschain S.P., Kepple P. Development of electron beam pumped KrF lasers for fusion energy // Phys. Plasmas. 2003. V. 10. P. 2142-2146.
6. Eiichi Takahashi, Losev L.L., Yuji Matsumoto, Isao Okuda, Isao Matsushima, Susumu Kato, Hirotaka Nakamurac, Kenji Kuwaharad, Yoshiro Owadano. KrF laser picosecond pulse source by stimulated scattering processes // Opt. Commun. 2003. V. 215. P. 163-167.
7. Eiichi Takahashi, Losev L.L., Yuji Matsumoto, Isao Okuda, Susumu Kato, Tatsuya Aota, Yoshiro Owadano. 1 ps, 3 mJ KrF laser pulses generated using stimulated Raman scattering and fast Pockels cell // Opt. Commun. 2005. V. 247. P. 149-152.
8. Szatmari S., Schafer F.P. Simplified laser system for the generation of 60 fs pulses at 248 nm // Opt. Commun. 1988. V. 68. P. 196-202.
9. Christov C.G., Tomov I.V., Chaltakov I.V. Shorting of excimer laser pulses with saturable absorbers // Opt. Commun. 1984. V. 52. P. 211-214.
10. Li H.X., Lou Q.H., Ye Z.H. et al. Research on evaluating norm of excimer laser beam uniformity // High Power Laser and Particle Beams. 2004. V. 16. P. 729-732.
11. Allen L., Peters G.I. Amplified spontaneous emission III. Intensity and saturation // J. Phys. A. Gen. Phys. 1971. V. 4. P. 564-573.
12. Peters G.I., Allen L. Amplified spontaneous emission. IV. Beam divergence and spatial coherence // J. Phys. A. Gen. Phys. 1972. V. 5. P. 546-554.
13. Hariri S. Sarikhani. Theoretical application of z-dependent gain coefficient to describe amplified spontaneous emission // Opt. Lett. 2012. V. 37. P. 1127-1129.