Том 28, номер 02, статья № 1

pdf Манулович Е. С., Астапенко В. А., Головинский П. А. Распространение ультракоротких лазерных импульсов в сухом и влажном воздухе. // Оптика атмосферы и океана. 2015. Т. 28. № 02. С. 105-112.
Скопировать ссылку в буфер обмена
Аннотация:

Рассмотрено распространение ультракороткого лазерного импульса в атмосфере с учетом дифракции и дисперсионных свойств атмосферы. Представлены результаты численного моделирования распространения импульсов длительностью от единиц до десятков фемтосекунд в воздухе при комнатной температуре. Продемонстрировано быстрое расплывание таких импульсов при скорректированной гауссовой форме временной огибающей. Рассчитано распространение импульса с отрицательным начальным чирпом в сухом и влажном воздухе, позволяющим частично скомпенсировать эффекты дисперсии и дифракции. Получена зависимость расстояния, на котором длительность импульса становится минимальной, от влажности воздуха.

Ключевые слова:

ультракороткий импульс, дисперсия воздуха, дифракция, распространение, влажность, чирп

Список литературы:

  1. Zuev V.E. Laser beam in the atmosphere. N.Y.: Plenum Publishing Corporation, 1982. 503 p.
  2. Sprangle S., Peñano J.R., Hafizi B. Propagation of intense short pulses in the atmosphere // Phys. Rev. E. 2002. V. 66, N 4. P. 046418(21).
  3. Kasparian J., Wolf J.-P. Physics and applications of atmospheric nonlinear optics and filamentation // Opt. Express. 2008. V. 16, N 1. P. 466–493.
  4. Mattis I., Ansmann A., Althausen D., Jaenisch V., Wandinger U., Muller D., Arshinov Y., Bobrovnikov S., Serikov I. Relative-humidity profiling in the troposphere with a Raman lidar // Appl. Opt.-LP. 2002. V. 41, N 30. P. 6451–6462.
  5. Hartman H.-J., Laubereau A. Transient infrared spectroscopy on the picosecond time-scale by coherent pulse propagation // J. Chem. Phys. 1984. V. 80, N 10. P. 4663–4670.
  6. Shaik K.S. Atmospheric propagation effects relevant to optical communications // TDA Progress Report. 1988. V. 42–94, N 89. P. 180–200.
  7. Coherence and ultrashort pulse laser emission / Ed. by Dr. F.J. Duarte. Rijeka: InTech, 2010. 688 p.
  8. Маракасов Д.А. Структура пространственно-временного спектра лазерного пучка в атмосфере в условиях сильной турбулентности // Оптика атмосф. и океана. 2013. Т. 26, № 5. С. 345–349.
  9. Артыщенко С.В., Головинский П.А., Чернов Р.А. Восстановление фазы волнового фронта с использованием комплексной нейронной сети // Оптика атмосф. и океана. 2014. Т. 27, № 10. С. 1–5.
  10. Wilks S.C., Morris J.R., Brase J.M., Olivier S.S., Henderson J.R., Thompson C., Kartz M., Ruggerio A.J. Modeling of adaptive optics-based free-space communications systems // Proc. SPIE. 2002. V. 4421. P. 121–128.
  11. Wu H., Yan H., Li X. Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence // Optik. 2010. V. 121, N 19. P. 1789–1793.
  12. Salihi J.A., Weiner A.M., Heritage J.P. Coherent ultrashort pulse code-division multiple access communication systems // J. Light Technol. 1990. V. 8, N 3. P. 478–491.
  13. Porras M.A. Nonsinusoidal few-cycle pulsed light beams in free space // J. Opt. Soc. Amer. B. 1999. V. 16, N 9. P. 1468–1474.
  14. Головинский П.А., Михайлов Е.М. Описание дифракции и фокусировки ультракоротких импульсов на основе нестационарного метода Кирхгофа–Зоммерфельда // Ж. эксперим. и теор. физ. 2000. Т. 117, вып. 2. С. 275–285.
  15. Saari P. Evolution of subcycle pulses in nonparaxial Gaussian beams // Opt. Express. 2001. V. 8, N 11. P. 590–598.
  16. Lin Q., Zheng J., Becker W. Subcycle pulsed focused vector beams // Phys. Rev. Lett. V. 97, N 25. P. 253902(4).
  17. Hunsche S., Feng S., Winful H.G., Leitenstofer A., Nuss M.C., Ippen E.P. Spatiotemporal focusing of single-cycle light pulses // J. Opt. Soc. Amer. A. 1999. V. 16, N 8. P. 2025–2028.
  18. Pearce J., Mittleman D. Defining the Fresnel zone for broadband radiation // Phys. Rev. E. 2002. V. 66, N 5. P. 056602(4).
  19. Yap D.F.W., Wong Y.C., Koh S.P., Tiong S.K., Mohd Tahir M.A.E. Effects of second order dispersion in free space optical communication // J. Appl. Sci. 2010. V. 10, N 7. P. 595–598.
  20. Alexeev I., Ting A., Gordon D.F., Briscoe E., Peñano J.R., Hubbard R.F., Sprangle P. Longitudinal compression of short laser pulses in air // Appl. Phys. Lett. 2004. V. 84, N 20. P. 4080–4082.
  21. Diels J.-C. Ultrashort pulse phenomena. London: Academic Press, 2006. 652 p.
  22. Seilmeier A., Wörner M., Hübner H.J., Kaiser W. Distortion of infrared picosecond pulses after propagation in atmospheric air // Appl. Phys. Lett. 1988. V. 53, N 25. P. 2468–2470.
  23. Edlén B. The refractive index of air // Metrologia. 1966. V. 2. P. 71–80.
  24. Owens J.C. Optical refractive index of air: Dependence on pressure, temperature and composition // Appl. Opt. 1967. V. 6, N 1. P. 51–59.
  25. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1979. 383 с.
  26. Caron C.F.R., Potvlirge R.M. Free-space propagation of ultrashort pulses: Space-time coupling in Gaussian pulse beams // J. Mod. Opt. 1999. V. 46, N 13. P. 1881–1891.
  27. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988. 310 с.
  28. Christov I.P. Propagation of femtosecond light pulses // Opt. Commun. 1985. V. 53, N 6. P. 362–366.
  29. URL: http://spectra.iao.ru
  30. Qiang Lin, Jian Zheng, Becker W. Subcycle pulsed focused vector beams // Phys. Rev. Lett. 2006. V. 97, N 25. P. 253902–19.
  31. Астапенко В.А. Взаимодействие электромагнитных импульсов с классическими и квантовыми системами. М.: Изд-во МФТИ, 2013. 232 с.