Том 28, номер 05, статья № 3

pdf Кочанов Р. В., Ташкун С. А., Тютерев Вл. Г. О моделировании поверхностей потенциальной энергии для молекулярной спектроскопии. // Оптика атмосферы и океана. 2015. Т. 28. № 05. С. 391-407. DOI: 10.15372/AOO20150503.
Скопировать ссылку в буфер обмена
Аннотация:

Обсуждается современное состояние дел с построением и применением поверхностей потенциальной энергии в задачах молекулярной спектроскопии высокого разрешения. Приводятся примеры использования полученных поверхностей, в основном для трехатомных молекул, с учетом опыта авторов. Рассматриваются вопросы технологии аналитического или сплайнового моделирования для обеспечения физически разумной поверхности, обычно опускаемые в публикациях.

Ключевые слова:

обзор поверхностей потенциальной энергии, путь наименьшей энергии, моделирование молекулярных спектров высокого разрешения, ab initio расчеты электронной структуры, аналитическое моделирование, сплайны

Список литературы:


1. Murrell J.N., Carter S., Farantos S.C., Huxley P., Varandos A.J.C. Molecular Potential Energy Functions.  Chichester: John Wiley, 1984. 206 р.
2. Schatz G.C. The analytical representation of electronic potential-energy surfaces // Rev. Mod. Phys. 1989. V. 61, N 3. P. 669–688.
3. Bytautas L., Bowman J.M., Huang X., Varandas A.J.C. (Eds.) Accurate potential energy surfaces and beyond: Chemical reactivity, binding, long-range interactions, and spectroscopy // Adv. Phys. Chem. Hindawi Publishing Corporation, 2012. 149 p.
4. Hollebeek T., Ho T.S., Rabitz H. Constructing multidimensional molecular potential energy surfaces from ab initio data // Annu. Rev. Phys. Chem. 1999. V. 50. P. 537–570.
5. Braams B.J., Bowman J.M. Permutationally invariant potential energy surfaces in high dimensionality // Int. Rev. Phys. Chem. 2009. V. 28, N 4. P. 577–606.
6. Sutcliffe B.T. The idea of a potential energy surface // Mol. Phys. 2006. V. 104, N 5–7. P. 715–722.
7. Handy N.C., Yamaguchi Y., Schaefer H.F. The diagonal correction to the Born–Oppenheimer approximation: it’s effect on the singlet-triplet splitting of CH2 and other molecular effects // J. Chem. Phys. 1986. V. 84, N 8. P. 4481–4484.
8. Partridge H., Schwenke D.W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data // J. Chem. Phys. 1997. V. 106, N 11. P. 4618–4639.
9. Kutzelnigg W. The adiabatic approximation. I. The physical background of the Born–Handy ansatz // Mol. Phys. 1997. V. 90, N 6. P. 909–916.
10. Szalay P., Holka F., Fremont J., Rey M., Peterson K., Tyuterev Vl.G. Are ab initio quantum chemistry methods able to predict vibrational states up to the dissociation limit for multi-electron molecules close to spectroscopic accuracy? // Phys. Chem. Chem. Phys. 2011. V. 13, N 9. P. 3654–3659.
11. Bunker P.R., Moss R.E. The breakdown of the Born–Oppenheimer approximation: The effective vibration-rotation hamiltonian for a diatomic molecule // Mol. Phys. 1977. V. 33, N 2. P. 417–424.
12. Schwenke D.W. A first principle effective Hamiltonian for including nonadiabatic effects for H2+ and HD+ // J. Chem. Phys. 2001. V. 114, N 4. P. 1693–1699.
13. Rey M., Tyuterev Vl.G. Adiabatic and non-adiabatic corrections to rovibrational energies of diatomic molecules: Variational calculations with experimental accuracy // Phys. Chem. Chem. Phys. 2007. V. 9, N 9. P. 2538–2548.
14. Polyansky O.L., Ovsyannikov R.I., Kyuberis A.A., Lodi L., Tennyson J., Zobov N.F. Calculation of rotation-vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface // J. Phys. Chem. A. 2013. V. 117, N 39. P. 9633–9643.
15. Domcke W., Yarkony D.R. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics // Annu. Rev. Phys. Chem. 2012. V. 63. P. 325–352.
16. Hoy A.R., Mills I.M., Strey G. Anharmonic force constant calculations // J. Mol. Phys. 1972. V. 24, N 6. P. 1265.
17. Islampour R., Gharibi M., Miralinaghi M. The molecular Hamiltonian in Jacobi coordinates // J. Mol. Phys. 2006. V. 104, N 12. P. 1879–1890.
18. Smith F.T. Modified Heliocentric Coordinates for Particle Dynamics // Phys. Rev. Lett. 1980. V. 45, N 14. P. 1157.
19. Johnson B.R. On hyperspherical coordinates and mapping the internal configurations of a three body system // J. Chem. Phys. 1980. V. 73, N 10. P. 5051–5058.
20. Sutcliffe B.T. The use of perimetric coordinates in the vibration-rotation Hamiltonian for triatomic molecules // J. Mol. Phys. 1992. V. 75, N 6. P. 1233–1236.
21. Tennyson J., Sutcliffe B.T. The ab initio calculation of the vibrational-rotational spectrum of triatomic systems in the close-coupling approach, with KCN and H2Ne as examples // J. Chem. Phys. 1982. V. 77, N 7. P. 4061–4072.
22. Mladenovic M. Rovibrational Hamiltonians for general polyatomic molecules in spherical polar parametrization. I. Orthogonal representations // J. Chem. Phys. 2000. V. 112, N 3. P. 1070–1081.
23. Gatti F., Iung C. Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach // Phys. Rep. 2009. V. 484. P. 1–69.
24. Wilson E.B., Decius J.C., Cross P.C. Molecular vibrations: The theory of infrared and Raman vibrational spectra. New York: McGraw-Hill, 1955. 388 p.
25. Watson J.K.G. Simplification of the molecular vibration-rotation hamiltonian // J. Mol. Phys. 1968. V. 15, N 5. P. 479–490.
26. Flugge S. Practical Quantum Mechanics. Springer, 1999. 248 p.
27. Kaplan I.G. Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials. Chichester: Wiley, 2006. 380 p.
28. Tyuterev Vl.G., Velichko T.I. High order anharmonicity parameters in various representations of the diatomic potential function and exact relations between spectroscopic constants // Chem. Phys. Lett. 1984. V. 104. P. 596–604.
29. LeRoy R.J., Bernstein R.B. Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels // J. Chem. Phys. 1970. V. 52, N 8. P. 3869–3879.
30. Le Roy R.J., Haugen C.C., Tao J., Li H. Long-range damping functions improve the short-range behaviour of ‘MLR’ potential energy functions // J. Mol. Phys. 2011. V. 109, N 3. P. 435–446.
31. Jensen P. A new morse oscillator-rigid bender internal dynamics (MORBID) Hamiltonian for triatomic molecules  // J. Mol. Spectrosc. 1988. V. 128, N 2. P. 478–501.
32. Jensen P., Tashkun S.A., Tyuterev Vl.G. A Refined Potential Energy Surface for the Electronic Ground State of the Water Molecule // J. Mol. Spectrosc. 1994. V. 168, N 2. P. 271–289.
33. Schryber J.H., Polyansky O.L., Jensen P., Tennyson J. On the Spectroscopically Determined Potential Energy Surfaces for the Electronic Ground States of NO2 and H2O // J. Mol. Spectrosc. 1997. V. 185, N 2. P. 234–243.
34. Tyuterev Vl.G., Tashkun S.A., Jensen P., Barbe A., Cours T. Determination of the Effective Ground State Potential Energy Function of Ozone from High-Resolution Infrared Spectra // J. Mol. Spectrosc. 1999. V. 198, N 1. P. 57–76.
35. Tyuterev Vl.G., Tashkun S.A., Schwenke D.W., Jensen P., Cours T., Barbe A., Jacon M. Variational EKE-calculations of rovibrational energies of the ozone molecule from an empirical potential function // Chem. Phys. Lett. 2000. V. 316, N 3–4. P. 271–279.
36. Polyansky O.L., Jensen P., Tennyson J. The Potential Energy Surface of Hydrogen Sulfide // J. Mol. Spectrosc. 1996. V. 178, N 2. P. 184–188.
37. Tyuterev Vl.G., Tashkun S.A., Schwenke D.W. An accurate isotopically invariant potential function of the hydrogen sulphide molecule // Chem. Phys. Lett. 2001. V. 348, N 3–4. P. 223–234.
38. Ulenikov O.N., Bekhtereva E.S., Leroy C., Gromov O.V., Fomchenko A.L. On the determination of the intramolecular potential energy surface of polyatomic molecules: Hydrogen sulfide and formaldehyde as an illustration // J. Mol. Spectrosc. 2009. V. 255, N 2. P. 88–100.
39. Zuniga J., Alacid M., Bastida A., Carvajal F.J., Requena A. Determination of a Potential Energy Surface for CO2 Using Generalized Internal Vibrational Coordinates // J. Mol. Spectrosc. 1999. V. 195, N 1. P. 137–146.
40. Lu Y., Xie D., Yan G. A Potential Energy Surface for the Electronic Ground State of CO2 // Int. J. Quant. Chem. 2000. V. 78, N 4. P. 269–280.
41. Yan G., Xian H., Xie D. A potential energy surface for the electronic ground state of N2O // Chem. Phys. Lett. 1997. V. 271, N 1–3. P. 157–162.
42. Tashkun S.A., Jensen P. The Low-Energy Part of the Potential Function for the Electronic Ground State of NO2 Derived from Experiment // J. Mol. Spectrosc. 1994. V. 165, N 1. P. 173–184.
43. Derksen H., Kemper G. Computational Invariant Theory. Berlin: Springer-Verlag, 2002. 268 p.
44. Carter S., Mills I.M., Murrell J.N., Varandas A.J.C. Analytical potentials for triatomic molecules // J. Mol. Phys. 1982. V. 45, N 5. P. 1053–1066.
45. Császár A.G., Mátyus E., Szidarovszky T., Lodi L., Zobov N.F., Shirin S.F., Polyansky O.L., Tennyson J. First-principles prediction and partial characterization of the vibrational states of water up to dissociation // J. Quant. Spectrosc. Radiat. Transf. 2010. V. 111, iss. 9. P. 1043–1064.
46. Rothman L.S., Gordon I.E., Babikov Y.L. et al. The HITRAN 2012 Molecular Spectroscopic Database // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 130, iss. 1. P. 4–50.
47. Schwenke D.W. Variational Calculations of Rovibrational Energy Levels and Transition Intensities for Tetratomic Molecules // J. Phys. Chem. 1996. V. 100, iss. 8. P. 2867; J. Phys. Chem., 1996. V. 100, iss. 48. P. 18884.
48. Mikhailenko S.N., Wang L., Kassi S., Campargue A. Weak water absorption lines around 1.455 and 1.66 µm by CW-CRDS // J. Mol. Spectrosc. 2007. V. 244. P. 170–178.
49. Mikhailenko S.N., Tashkun S.A., Putilova T.A., Starikova E.N., Daumont L., Jenouvrier A., Fally S., Carleer M., Hermans C., Vandaele A.C. Critical evaluation of measured rotation-vibration transitions and an experimental dataset of energy levels of HD18O // J. Quant. Spectrosc. Radiat. Transf. 2009. V. 110, N 9–10. P. 597–608.
50. Mikhailenko S.N., Tashkun S.A., Daumont L., Jenouvrier A., Carleer M., Fally S., Vandaele A.C. Line positions and energy levels of the 18O substitutions from the HDO/D2O spectra between 5600 and 8800 cm–1 // J. Quant. Spectrosc. Radiat. Transf. 2010. V. 111. P. 2185–2196.
51. Tyuterev Vl.G., Kochanov R.V., Tashkun S.A., Holka F., Szalay P. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range // J. Chem. Phys. 2013. V. 139, iss. 13. P. 134307.
52. Siebert R., Fleurat-Lessard P., Schinke R., Bittererova M., Farantos S.C. The vibrational energies of ozone up to the dissociation threshold: Dynamics calculations on an accurate potential energy surface // J. Chem. Phys. 2002. V. 116, N 22. P. 9749–9767.
53. De Boor C. A Practical Guide to Splines // Applied Mathematical Sciences. New York: Springer, 2001. 348 p.
54. Renka R.J. Algorithm 716. TSPACK: Tension Spline Curve-Fitting Package // ACM Transact. Math. Soft. 1993. V. 19, N 1. P. 81–94.
55. Schwenke D.W., Partridge H. Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities // J. Chem. Phys. 2000. V. 113, N 16. P. 6592–6597.
56. URL: http://www.roguewave.com/products-services/ imsl-numerical-libraries
57. Кочанов Р.В. Вклад в моделирование молекулярных спектров на основе поверхностей потенциальной энергии и эффективных гамильтонианов: приложения к спектроскопическим банкам данных: Дис. Реймский университет, Франция. 2013. 373 p.
58. Dawes R., Lolur P., Li A., Jiang B., Guo H. Communication: An accurate global potential energy surface for the ground electronic state of ozone // J. Chem. Phys. 2013. V. 139. P. 201103.
59. Nikitin A.V., Rey M., Tyuterev Vl.G. Rotational and vibrational energy levels of methane calculated from a new potential energy surface // Chem. Phys. Lett. 2011. V. 501, N 4–6. P. 179–186.
60. Yurchenko S.N., Thiel W., Jensen P. Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules // J. Mol. Spectrosc. 2007. V. 245, N 2. P. 126–140.
61. Rey M., Nikitin A.V., Tyuterev Vl.G. First-principles intensity calculations for the methane rovibrational spectra in the infrared up to 9300 cm–1 // Phys. Chem. Chem. Phys. 2013. V. 15, N 25. P. 10049–10061.
62. Light J.C., Bacic Z. Adiabatic approximation and nonadiabatic corrections in the discrete variable representation – highly excited vibrational-states of triatomic-molecules // J. Chem. Phys. 1987. V. 87, N 7. P. 4008.
63. Tennyson J., Henderson J.R. Highly excited rovibrational states using a discrete variable representation: The H3+ molecular ion // J. Chem. Phys. 1989. V. 91, N 7. P. 3815.
64. Mandelshtam V.A., Taylor H.S. A low-storage filter diagonalization method for quantum eigenenergy calculation or for spectral analysis of time signals // J. Chem. Phys. 1997. V. 106, N 12. P. 5085.
65. Kokooulin V., Greene C. Unified theoretical treatment of dissociative recombination of D3h triatomic ions: Application to H3+ and D3+ // Phys. Rev. A. 2003. V. 68, N 12. P. 012703.
66. Sibert E.L. Theoretical studies of vibrationally excited polyatomic molecules using canonical van Vleck perturbation theory // J. Chem. Phys. 1988. V. 88, N 7. P. 4378−4390.
67. Lamouroux J., Tashkun S.A., Tyuterev Vl.G. Accurate calculation of transition moment parameters for rovibrational bands from ab initio dipole and potential surfaces: Application to fundamental bands of the water molecule // Chem. Phys. Lett. 2008. V. 452, N 1–3. P. 225–231.
68. Tyuterev Vl.G., Tashkun S.A., Rey M., Kochanov R.V., Nikitin A.V., Delahaye T. Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order Contact Transformations // J. Phys. Chem. A. 2013. V. 117, N 13. P. 13779–13805.
69. Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. Numerical-Analytic Implementation of the Higher-Order Canonical Van Vleck Perturbation Theory for the Interpretation of Medium-Sized Molecule Vibrational Spectra // J. Phys. Chem. A. 2012. V. 116, N 14. P. 3691− 3709.
70. Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Eds.: H.-D. Meyer, F. Gatti, G. Wein-heim. Worth: Wiley, 2009. 442 p.
71. Ayouz M., Babikov Y.L. Global permutationally invariant potential energy surface for ozone forming reaction // J. Chem. Phys. 2013. V. 138, N 16. P. 164311.
72. Babikov Y.L., Mikhailenko S.N., Barbe A., Tyuterev Vl.G. S&MPO – An information system for ozone spectroscopy on the WEB // J. Quant. Spectrosc. Radiat. Transf. 2014. V. 145. P. 169–191.
73. Tyuterev Vl.G., Kochanov R.V., Campargue A., Kassi S., Mondelain D., Barbe A., Starikova E., De Backer M.R., Szalay P.G., Tashkun S.A. Does the “Reef Structure” at the Ozone Transition State towards the Dissociation Exist? New Insight from Calculations and Ultrasensitive Spectroscopy Experiments // Phys. Rev. Lett. 2014. V. 113, N 14. P. 143002.
74. Chedin A. The Carbon Dioxide Molecule: Potential, Spectroscopic, and Molecular Constants from Its Infrared Spectrum // J. Mol. Spectrosc. 1979. V. 76, N 1–3. P. 430–491.
75. Chedin A., Teffo J.-L. The Carbon Dioxide Molecule: A New Derivation of the Potential, Spectroscopic, and Molecular Constants // J. Mol. Spectrosc. 1984. V. 107, N 2. P. 333–342.
76. Teffo J.L., Chedin A. Internuclear Potential and Equilibrium Structure of the Nitrous Oxide Molecule from Rovibrational Data // J. Mol. Spectrosc. 1989. V. 135, N 2. P. 389–409.
77. Wattson R.B., Rothman L.S. Determination of Vibrational Energy Levels and Parallel Band Intensities of 12C16O2 by Direct Numerical Diagonalization // J. Mol. Spectrosc. 1986. V. 119, N 1. P. 83–100.
78. Wattson R.B., Rothman L.S. Direct numerical diagonalization: Wave of the future // J. Quant. Spectrosc. Radiat. Transf. 1992. V. 48, N 5–6. P. 763–780.
79. Aguir M.B.E., Perrin M.Y., Taine J. Variational Calculation of Energies of Highly Excited Rovibrational States of 12C16O2 // J. Mol. Spectrosc. 2002. V. 215, N 2. P. 234–243.
80. Zuniga J., Alacid M., Bastida A., Requena A. Variational calculations of vibrational states of N2O using hyperspherical normal coordinates // J. Chem. Phys. 1996. V. 105, N 15. P. 6099.
81. Zuniga J., Alacid M., Bastida A., Carvajal F.J., Requena A. Determination of highly excited rovibrational states for N2O using generalized internal coordinates // J. Chem. Phys. 1999. V. 110. N 13. P. 6339–6352.
82. Murrell J.N., Guo H. Potential-energy Functions for the Ground States of CO, CS, and OCS, and Dynamical Calculations on the Reaction O (1D)+CS(1S+)®S(1D)+CO(1S+) // J. Chem. Soc., Faraday Trans. 2. 1987. V. 83. P. 683–692.
83. Huang X., Schwenke D.W, Tashkun S.A., Lee T.J. An Isotopic-Independent Highly-Accurate Potential Energy Surface for CO2 Isotopologues and Primitive 12C16O2 IR Linelists // J. Chem. Phys. 2012. V. 136, N 12. P. 124311.
84. Huang X., Gamache R.R., Freedman R.S., Schwenke D.W., Lee T.J. Reliable infrared line lists for 13 CO2 isotopologues up to E < 18000 cm–1 and 1500 K, with line shape parameters // J. Quant. Spectrosc. Radiat. Transf. 2014. V. 147. P. 134–144.
85. Cerezo J., Bastida A., Requena A., Zuniga J. Rovibrational energies, partition functions and equilibrium fractionation of the CO2 isotopologues // J. Quant. Spectrosc. Radiat. Transf. 2014. V. 147. P. 233–251.
86. Meuwly M., Hutson J.M. Morphing ab initio potentials: A systematic study of Ne–HF // J. Chem. Phys. 1999. V. 110, N 17. P. 8338–8347.
87. Rivera-Rivera L.A. Morphed Potential Energy from the Spectroscopy of Weakly Bound Complexes: PhD thesis. Texas A&M University, 2011.
88. Shirin S.V., Polyansky O.L., Zobov N.F., Barletta P., Tennyson J. Spectroscopically determined potential energy surface of H216O up to 25000 cm–1 // J. Chem. Phys. 2003. V. 118, N 5. P. 2124–2129.
89. Barber R.J., Tennyson J., Harris G.J., Tolchenov R.N. A high-accuracy computed water line list // Mon. Notic. Roy. Astron. Soc. 2006. V. 368. P. 1087–1094.
90. Rothman L.S., Gordon I.E., Barder R.J., Dothe H., Gamache R.R., Goldman A., Perevalov V.I., Tashkun S.A., Tennyson J. HITEMP, the high-temperature molecular spectroscopic database // J. Quant. Spectros. Radiat. Transf. 2010. V. 111, N 15. P. 2139–2150.
91. Huang X., Schwenke D.W., Lee T.J. Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections // J. Chem. Phys. 2011. V. 134, N 4. P. 044320
92. Yachmenev A., Yurchenko S.N., Ribeyre T., Thiel W. High-level ab initio potential energy surfaces and vibrational energies of H2CS // J. Chem. Phys. 2011. V. 135, N 7. P. 074302.
93. Yurchenko S.N., Barber R.J., Tennyson J., Thiel W., Jensen P. Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study // J. Mol. Spectrosc. 2011. V. 268, N 1–2. P. 123–129.
94. Nikitin A.V., Holka F., Tyuterev Vl.G., Fremont J. Vibration energy levels of the PH3, PH2D, and PHD2 molecules calculated from high order potential energy surface // J. Chem. Phys. 2009. V. 130, N 24. P. 244312.
95. Nikitin A.V., Rey M., Tyuterev V.G. Rotational and vibrational energy levels of methyl fluoride calculated from a new potential energy surface // J. Mol. Spectrosc. 2012. V. 274, N 1. P. 28–34.
96. Delahaye T., Nikitin A., Rey M., Szalay P.G., Tyuterev Vl.G. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels // J. Chem. Phys. 2014. V. 141, N 10. P. 104301.
97. Rey M., Nikitin A.V., Tyuterev Vl.G. Theoretical hot methane line list up to 2000 K // Astrophys. J. 2014. V. 789, N 2. P. 1.
98. Sousa-Silva C., Al-Refaie A.F., Tennyson J., Yurchenko S.N. ExoMol line lists VII: The rotation-vibration spectrum of phosphine up to 1500 K // Mon. Notic. Roy. Astron. Soc. 2014. V. 446. P. 2337–2347.
99. Brown J., Wang X.-G., Carrington T., Grubbs G.S. II, Dawes R. Computational study of the rovibrational spectrum of CO2–CS2 // J. Chem. Phys. 2014. V. 140, N 11. P. 114303.
100. Minaeva V.A., Minaev B.F., Baryshnikov G.V., Romeyko O., Pittelkow M. The FTIR spectra of substituted tetraoxa[8]circulenes and their assignments based on DFT calculations // Vibr. Spectrosc. 2013. V. 65, N 1. P. 147–158.