Том 28, номер 05, статья № 8

pdf Пташник И. В. Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы. // Оптика атмосферы и океана. 2015. Т. 28. № 05. С. 443-459. DOI: 10.15372/AOO20150508.
Скопировать ссылку в буфер обмена
Аннотация:

Слабоселективное (континуальное) поглощение электромагнитного излучения водяным паром является важным фактором, влияющим на радиационный баланс атмосферы Земли, а также – основным компонентом поглощения в ИК-окнах прозрачности атмосферы. Возможная физическая природа этого феномена дискутируется уже более 50 лет. В статье даются ретроспективный анализ и описание текущего состояния дел в решении проблемы, касающейся континуума водяного пара. Приводятся краткое описание существующих сегодня моделей континуального поглощения, их достоинства и недостатки, а также наиболее интересные экспериментальные и теоретические результаты последних лет, свидетельствующие о природе континуума.

Ключевые слова:

континуум H2O, димеры воды, бимолекулярное поглощение, MTCKD-модель континуума

Список литературы:

1. Held I.M., Soden B.J. Water vapor feedback and global warming // Annu. Rev. Energy. Environ. 2000. V. 25. Р. 441–475.
2. Clough S.A., Iacono M.J., Moncet J.-L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapour // J. Geophys. Res. 1992. V. 97. Р. 15761–15785.
3. Kilsby C.G., Edwards D.P., Saunders R.W., Foot J.S. Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons // Quart. J. Roy. Meteorol. Soc. 1992. V. 118. Р. 715–748.
4. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. Р. 535–555. DOI: 10.1007/s10712-011-9170-y.
5. Rubens H., Aschkinass E. Beobachtungen über Absorption und Emission von Wasserdampf und Kohlensaure im ultraroten Spectrum // Ann. Phys. 1898. V. 300. P. 584–601.
6. Hettner G. Über das ultrarote Absorptionsspektrum des Wasserdampfes // Ann. Phys. 1918. V. 360. P. 476–496.
7. Elsasser W.M. Far infrared absorption of atmospheric water vapour // Astrophys. J. 1938. V. 87. P. 497–507.
8. Elsasser W.M. Note on atmospheric absorption caused by the rotational water band // Phys. Rev. 1938. V. 53. P. 768.
9. Roach W.T., Goody W.M. Absorption and emission in the atmospheric window from 770 to 1 250 cm1 // Quart. J. Roy. Meteorol. Soc. 1958. V. 84. P. 319–331.
10. Bignell K., Saiedy F., Sheppard P.A. On the atmospheric infrared continuum // J. Opt. Soc. Amer. 1963. V. 53. P. 466–479.
11. Викторова А.А., Жевакин С.А. Димер водяного пара и его спектр // Докл. АН СССР. 1966. Т. 171, № 4. С. 833–836.
12. Викторова А.А., Жевакин С.А. Поглощение микрорадиволн в воздухе димерами водяного пара // Докл. АН СССР. 1966. Т. 171, № 5. С. 1061–1064.
13. Braun C., Leidecker H. Rotational and vibrational spectra for the H2O dimer: Theory and comparison with experimental data // J. Chem. Phys. 1974. V. 61. P. 3104–3113.
14. Вигасин А.А., Членова Г.В. Спектр димеров воды в области длин волн > 8 мкм и ослабление излучения в атмосфере // Изв. АН СССР. Физ. атмосф. и океана. 1984. Т. 20, № 7. С. 657–661.
15. Yukhnevich G.V., Tarakanova E.G. Some properties of the potential energy surface and vibrational spectrum of a strong hydrogen bond complex // J. Mol. Struct. 1988. V. 117. P. 495–512.
16. Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126. P. 234301-1–234301-12.
17. Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of water clusters by firstprinciples molecular dynamics // J. Chem. Phys. 2008. V. 128. P. 214506-1–214506-5.
18. Penner S.S., Varanasi P. Spectral absorption coefficients in the pure rotation spectrum of water vapour // J. Quant. Spectrosc. Radiat. Transfer. 1967. V. 7. P. 687–690.
19. Varanasi P., Chou S., Penner S.S. Absorption coefficients for water vapor in the 600–1 000 cm1 region // J. Quant. Spectrosc. Radiat. Transfer. 1968. V. 8. P. 1537–1541.
20. Bignell K.J. The water-vapour infrared continuum // Quart. J. Roy. Meteorol. Soc. 1970. V. 96. P. 390–403.
21. Burch D.E., Gryvnak D.A. Continuum absorption by H2O vapor in the infrared and millimetre wave regions / A. Deepak, T.D.Wilkerson, L.H. Ruhnke (eds.). Atmospheric water vapor. N.Y.: Academic Press, 1980. P. 47–76.
22. Burch D.E. Continuum absorption by H2O // Report AFGL-TR-81-0300. Air Force Geophysics Laboratory. Hanscom AFB, MA. 1981. 46 р.
23. Burch D., Alt R. Continuum absorption by H2O in the 700–1 200 and 2 400–2 800 cm1 windows // Report AFGL-TR-84-0128. Air Force Geophysics Laboratory. Hanscom AFB, MA. 1984. 31 р.
24. Burch D.E. Absorption by H2O in narrow windows between 3 000 and 4 200 cm1 // Report AFGL-TR-85-0036. US Air Force Geophysics Laboratory. Hanscom AFB, MA. 1985. 37 р.
25. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.D. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. Roy. Soc. A. 2012. V. 370. Р. 2520–2556. DOI: 10.1098/rsta.2011.0295.
26. Aref’ev V.N., Dianov-Klokov V.I. Attenuation of 10.6-mm radiation by water vapor and the role of (H2O)2 dimers // Opt. Spectrosc. 1977. V. 42. P. 488–492.
27. Aref’ev V.N., Dianov-Klokov V.I., Radionov V.F., Sizov N.I. Laboratory measurements of attenuation of CO2-laser radiation by pure water vapour // Opt. Spectrosc. 1975. V. 39. P. 560–561.
28. Anderson P.W. Pressure broadening in the microwave and infra-red regions // Phys. Rev. 1949. V. 76. P. 647–671.
29. Tsao C.J., Curnutte B. Line-widths of pressure broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1962. V. 2. P. 41–91.
30. Fomin V.V., Tvorogov S.D. Formation of the far wing contour of spectral lines broadened by a foreign gas; analysis of exponential decrease of continuous absorption beyond the band head of the 4.3 mm band of CO2 // Appl. Opt. 1973. V. 12. P. 584–589.
31. Несмелова Л.И., Творогов С.Д., Фомин В.В. Спектроскопия крыльев линий. Новосибирск: Наука, 1977. 141 с.
32. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Контур спектральной линии и межмолекулярное взаимодействие. Новосибирск: Наука, 1986. 216 с.
33. Tvorogov S.D., Rodimova O.B. Spectral line shape. I. Kinetic equation for arbitrary frequency detunings // J. Chem. Phys. 1995. V. 102, N 22. P. 8736–8745.
34. Thomas M.E., Nordstrom R.J. Line shape model for describing infrared absorption by water vapour // Appl. Opt. 1985. V. 24. P. 3526–3530.
35. Fano U. Pressure broadening as a prototype of relaxation // Phys. Rev. 1963. V. 131. P. 259–268.
36. Rosenkranz P.W. Pressure broadening of rotational bands. I. A statistical theory // J. Chem. Phys. 1985. V. 83. P. 6139–6144.
37. Rosenkranz P.W. Pressure broadening of rotational bands. II. Water vapor from 300 to 1 100 cm1 // J. Chem. Phys. 1987. V. 87. P. 163–170.
38. Ma Q., Tipping R.H. A far wing line shape theory and its application to the water continuum // J. Chem. Phys. 1991. V. 95. P. 6290–6301.
39. Ma Q., Tipping R.H. A far wing line shape theory and its application to the foreign-broadened water continuum absorption III // J. Chem. Phys. 1992. V. 97. P. 818–828.
40. Tipping R.H., Ma Q. Theory of the water vapor continuum and validations // Atmos. Res. 1995. V. 36. P. 69–94.
41. Ma Q., Tipping R.H. The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O–H2O // J. Chem. Phys. 2002. V. 116. P. 4102–4115.
42. Roberts R.E., Selby J.E.A., Biberman L.M. Infrared continuum absorption by atmospheric water–vapor in 8–12 mm window // Appl. Opt. 1976. V. 15. P. 2085–2090.
43. Clough S.A., Kneizys F.X., Davis R., Gamache R., Tipping R. Theoretical line shape for H2O vapor: Application to the continuum / A. Deepak, T.D. Wilkerson, L.H. Ruhnke (eds.). Atmospheric water vapor. N.Y.: Academic Press, 1980. P. 25–46.
44. Clough S.A., Kneizys F.X., Davies R.W. Line shape and water vapor continuum // Atmos. Res. 1989. V. 23. P. 229–241.
45. Van Vleck J.H., Huber D.L. Absorption, emission, and linebreadths: A semi-historical perspective // Rev. Mod. Phys. 1977. V. 49. P. 939–959.
46. Bogdanova Yu.V., Rodimova O.B. Calculation of water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. P. 2298–2307.
47. Климешина Т.Е., Богданова Ю.В., Родимова О.Б. Континуальное поглощение водяным паром в окнах прозрачности атмосферы 8–12 и 3–5 мкм // Оптика атмосф. и океана. 2011. Т. 24, № 9. С. 765–769.
48. Klimeshina T.E., Rodimova O.B. Temperature dependence of the water vapor continuum absorption in the 3–5 mm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 119. P. 77–83.
49. Гордов Е.П., Творогов С.Д. Метод полуклассического представления квантовой теории. Новосибирск: Наука, 1984. 167 с.
50. Bykov A.D., Klimeshina T.E., Rodimova O.B. On the vibrational dependence of the quantum intermolecular interaction potential // Proc. SPIE. 2014. V. 9292. P. 92920P-1–92920P-8. DOI: 10.1117/12.2075417.
51. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water–vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128. Р. 124313-1–124313-17.
52. Klimeshina T.E., Rodimova O.B. Description of metastable states in the asymptotic line shape theory // Proc. SPIE. 2014. V. 9292. P. 92920F-1–92920F-6.
53. Baranov Y.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1 250 cm1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 12–13. P. 2291–2302.
54. Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for low-absorption regions in the 1.6- and 2.1-μm atmospheric windows // J. Directed Energy. 2006. V. 2, N 2. P. 151–161.
55. Baranov Yu.I., Lafferty W.J. The water-vapour continuum and selective absorption in the 3 to 5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313.
56. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. P. D16305-1–D16305-16.
57. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.
58. Vigasin A.A. Water vapor continuum: Whether collision-induced absorption is involved? // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 148. P. 58–64.
59. Schofield D.P., Kjaergaard H.G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimmer // Phys. Chem. Chem. Phys. 2003. V. 5. P. 3100–3105.
60. Kjaergaard H., Garden A., Chaban G., Gerber R., Matthews D., Stanton J. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112. P. 4324–4335.
61. Salmi T., Hanninen V., Garden A.L., Kjaergaard H.G., Tennyson J., Halonen L. Calculation of the O–H stretching vibrational overtone spectrum of the water dimer // J. Phys. Chem. A. 2008. V. 112. P. 6305–6312.
62. Vigasin A.A. Water vapor continuous absorption in various mixtures: Possible role of weakly bound complexes // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 64. P. 25–40.
63. Cormier J.G., Hodges J.T., Drummond J.R. Infrared water vapor continuum absorption at atmospheric temperatures // J. Chem. Phys. 2005. V. 122. P. 114309-1–114309-10.
64. Pavlyuchko A.I., Vigasin A.A. The water dimer anharmonicity and the water vapor continuum absorption // Book of Abstracts: The 20th Int. conf. on high resolution molecular spectroscopy. Prague, Czech Republic. September 2–6, 2008. P. 147.
65. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers. 1. Review and analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
66. Vigasin A.A. Bound, metastable, and free states of bimolecular complexes // Infrared Phys. 1991. V. 32. P. 461–470.
67. Epifanov S.Y., Vigasin A.A. Subdivision of phase space for anisotropically interacting water molecules // Mol. Phys. 1997. V. 90. P. 101–106.
68. Vigasin A.A. Bimolecular absorption in atmospheric gases / C. Camy-Peyret, A.A. Vigasin (eds.). Weakly interacting molecular pairs: unconventional absorbers of radiation in the atmosphere. Kluwer, Netherlands. 2003. P. 23–47.
69. Burch D.E., Gryvnak D.A., Patty R.R. Absorption of infrared radiation by CO2 and H2O. Experimental techniques // J. Opt. Soc. Amer. 1967. V. 57. P. 885–895.
70. Schenter G.K., Kathmann S.M., Garrett B.C. Equilibrium constant for water dimerization: Analysis of the partition function for a weakly bound system // J. Phys. Chem. A. 2002. V. 106. P. 1557–1566.
71. Vigasin A.A. On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurized water vapour // Mol. Phys. 2010. V. 108. P. 2309–2313.
72. Lokshtanov S.E., Ivanov S.V., Vigasin A.A. Statistical physics partitioning and classical trajectory analysis of the phase space in CO2–Ar weakly interacting pairs // J. Mol. Struct. 2005. V. 742. P. 31–36.
73. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5 000–5 600 cm–1: Evidence for water dimmers // Quart. J. Roy. Meteorol. Soc. 2004. V. 130. P. 2391–2408.
74. Ptashnik I.V. Water dimers: An “unknown» experiment // Atmos. Ocean. Opt. 2005. V. 18, N 4. P. 324–326.
75. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vapor continuum measurements between 3 100 and 4 400 cm1: Evidence for water dimer absorption in near atmospheric conditions // Geophys. Res. Lett. 2007. V. 34. P. L12808-1–L12808-5.
76. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 831–852.
77. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1 200–8 000 cm1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301-1–D21301-23.
78. Bouteiller Y., Perchard J.P. The vibrational spectrum of (Н2O)2: Comparison between anharmonic ab initio calculations and neon matrix infrared data between 9 000 and 90 cm–1 // Chem. Phys. 2004. V. 305, N 1–3. P. 1–12.
79. Kuyanov-Prozument K., Choi M.Y., Vilesov A.F. Spectrum and infrared intensities of OH-stretching bands of water dimers // J. Chem. Phys. 2010. V. 132. P. 014304-1–014304-7.
80. Rothman L.S., Gordon I.E., Babikov I.E., Barbe A., Benner C.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
81. Baranov Yu.I. The continuum absorption in H2O + N2 mixtures in the 2 000–3 250 cm1 spectral region at temperatures from 326 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. Р. 2281–2286.
82. Baranov Yu.I., Lafferty W.J. The water vapour self- and water-nitrogen continuum absorption in the 1 000 and 2 500 cm–1 atmospheric windows // Phil. Trans. Roy. Soc. A. 2012. V. 370. Р. 2578–2589. DOI: 10.1098/rsta. 2011.0234.
83. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign continuum absorption in near-infrared wind6ws from laboratory measurements // Phil. Trans. Roy. Soc. A. 2012. V. 370. Р. 2557–2577. DOI: 10.1098/rsta.2011.0218.
84. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. Р. 381–391.
85. Пташник И.В., Петрова Т.М., Пономарев Ю.Н., Солодов А.А., Солодов А.М. Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона // Оптика атмосф. и океана. 2014. Т. 27, № 11. С. 970–975.
86. Горбунов А.А., Иголкин С.И. Кластерно-аэрозольный состав атмосферы и особенности определения влажности воздуха // Научное приборостроение. 2005. Т. 15, № 3. С. 88–93.
87. Cormier J.G., Ciurylo R., Drummond J.R. Cavity ringdown spectroscopy measurements of the infrared water vapor continuum // J. Chem. Phys. 2002. V. 116. P. 1030–1034.
88. Goldman N., Leforestier C., Saykally R.J. Water dimers in the atmosphere. II. Results from VRT(ASP-W)III potential surface // J. Phys. Chem. A. 2004. V. 108. P. 787–794.
89. Koshelev M.A., Serov E.A., Parshin V.V., Tretyakov M.Yu. Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2704–2713.
90. Serov E.A., Koshelev M.A., Odintsova T.A., Parshin V.V., Tretyakov M.Yu. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 GHz range // Phys. Chem. Chem. Phys. 2014. V. 16, N 47. P. 26221-33-1–26221-33-15. DOI: 10.1039/c4cp03252g.
91. Tretyakov M.Yu., Serov E.A., Koshelev M.A., Parshin V.V., Krupnov A.F. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature // Phys. Rev. Lett. 2013. V. 110. P. 093001-1–093001-4.
92. Sierk B., Solomon S., Daniel J.S., Portmann R.W., Gutman S.I., Langford A.O., Eubank C.S., Dutton E.G., Holub K.H. Field measurements of water vapor continuum absorption in the visible and near-infrared // J. Geophys. Res. 2004. V. 109. P. D08307-1–D08307­-20.
93. Tikhomirov A.B., Ptashnik B.V., Tikhomirov B.A. Measurement of the continuum absorption coefficient of water vapor near 14 400 cm–1 (0.694 mm) // Opt. Spectrosc. 2006. V. 101, N 1. P. 84–94.
94. Пташник И.В., Капитанов В.А., Пономарев Ю.Н., Криволуцкий Н.П., Кобцев С.М., Каблуков С.И. Определение коэффициента континуального поглощения водяного пара в области 0,900 мкм // Оптика атмосф. и океана. 2006. Т. 19, № 8. С. 684–686.
95. Hargrove J. Water dimer absorption of visible light // Atmos. Chem. Phys. Discuss. 2007. V. 7. P. 11123–11140. DOI: 10.5194/acpd-7-11123-2007.
96. URL: http://www.atmos-chem-phys-discuss.net/7/11123/ 2007/acpd-7-11123-2007-discussion.html
97. Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 458–467.