Функционирование тепловых электростанций сопровождается выбросом в атмосферу различных загрязняющих веществ, включая окислы азота. В настоящей работе представлены результаты спектрометрических измерений атмосферного содержания NO2, выполненных на кольцевых маршрутах, огибающих крупные городские ТЭЦ Санкт-Петербурга. Пространственная изменчивость тропосферного содержания NO2 в окрестностях ТЭЦ, определяемая из экспериментальных данных методом DOAS (Differential Optical Absorption Spectroscopy), демонстрирует повышенные значения с подветренной стороны от дымовых труб. Пространственные распределения, наблюдаемые в данных мобильных DOAS-измерений, подтверждаются результатами численных расчетов поля содержания NO2, выполненных с использованием модели HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectories) с учетом априорной информации об объемах эмиссии NOx основными городскими ТЭЦ. Приближенные оценки эмиссии NOx двумя крупнейшими ТЭЦ Санкт-Петербурга на основе расчетов суммарного потока молекул NO2 через замкнутый контур маршрута DOAS-измерений составили ~ 2 ¸ 3 тыс. т в год. Полученные экспериментальные данные важны для определения доли ТЭЦ в антропогенном загрязнении атмосферы.
окислы азота, двуокись азота, дифференциальная спектроскопия, DOAS, мобильные измерения, антропогенная эмиссия, ТЭЦ, NOx, NO2
1. Seinfeld J.H., Pandis S.N. From Air Pollution to Climate Change. Atmospheric Chemistry and Physics. 2nd ed. New York: John Wiley & Sons, 2006. 1326 p.
2. Molina J.M., Molina L.T. Megacities and atmospheric pollution // J. Air Waste Manag. Assoc. 2004. V. 54, N 6. P. 644–680. DOI: 10.1080/10473289.2004.10470936.
3. Голдовская Л.Ф. Химия окружающей среды. М.: Мир, 2005. 296 с.
4. Platt U., Stuz J. Differential Optical Absorption Spectroscopy (DOAS), Principles and Applications. Berlin–Heidelberg: Springer, 2008. 598 p.
5. Johansson M., Galle B., Yu T., Tang L., Chen D., Li H., Li J.X., Zhang Y. Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS // Atmos. Environ. 2008. V. 42. P. 6926–6933. DOI: 10.1016/j.atmosenv.2008.05.025.
6. Johansson M., Rivera C., de Foy B., Lei W., Song J., Zhang Y., Galle B., Molina L. Mobile mini-DOAS measurement of the outflow of NO2 and HCHO from Mexico City // Atmos. Chem. Phys. 2009. V. 9. P. 5647–5653. DOI: 10.5194/acp-9-5647-2009.
7. Rivera C., Sosa G., Wohrnschimmel H., de Foy B., Johansson M., Galle B. Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a mobile mini-DOAS system // Atmos. Chem. Phys. 2009. V. 9. P. 6351–6361. DOI: 10.5194/acp-9-6351-2009.
8. Ibrahim O., Shaiganfar R., Sinreich R., Stein T., Platt U., Wagner T. Car MAX-DOAS measurements around entire cities: Quantification of NOx emissions from the cities of Mannheim and Ludwigshafen (Germany) // Atmos. Meas. Tech. 2010. V. 3. P. 709–721. DOI: 10.5194/amt-3-709-2010.
9. Shaiganfar R., Beirle S., Sharma M., Chauhan A., Singh R.P., Wagner T. Estimation of NOx emissions from Delhi using car MAX-DOAS observations and comparison with OMI satellite data // Atmos. Chem. Phys. 2001. V. 11. P. 10871–10887. DOI: 10.5194/acp-11-10871-2011.
10. Wang S., Zhou B., Wang Z., Yang S., Hao N., Valks P., Trautmann T., Chen L. Remote sensing of NO2 emission from the central urban area of Shanghai (China) using the mobile DOAS technique // J. Geophys. Res. 2012. V. 117, N D13305. P. 1–14. DOI: 10.1029/2011JD016983.
11. Wu F.C., Xie P.H., Li A., Chan K.L., Hart A., Wang Y., Si F.Q., Zeng Y.M., Qin M., Xu J., Liu J.G., Liu W.Q., Wenig M. Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010 // Atmos. Meas. Tech. 2013. V. 6. P. 2277–2292. DOI: 10.5194/amt-6-2277-2013.
12. Rivera C., Barrera H., Grutter M., Zavala M., Galle B., Bei N., Li G., Molina L.T. NO2 fluxes from Tijuana using a mobile mini-DOAS during Cal-Mex 2010 // Atmos. Environ. 2013. V. 70. P. 532–539. DOI: 10.1016/j.atmosenv.2012.12.026.
13. Frins E., Bobrowski N., Osorio M., Casaballe N., Belsterli G., Wagner T., Platt U. Scanning and mobile multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo, Uruguay // Atmos. Environ. 2014. V. 98. P. 347–356. DOI: 10.1016/j.atmosenv.2014.03.069.
14. Li A., Zhang J., Xie P., Hu Z., Xu J., Mou F., Wu F., Liu J., Liu W. Variation of temporal and spatial patterns of NO2 in Beijing using OMI and mobile DOAS // Science China. 2015. V. 58, N 9. P. 1367–1376. DOI: 10.1007/s11426-015-5459-x.
15. Shaiganfar R., Beirle S., Petetin H., Zhang Q., Beekmann M., Wagner T. New concepts for the comparison of tropospheric NO2 column densities derived from car-MAX-DOAS observations, OMI satellite observations and the regional model CHIMERE during two MEGAPOLI campaigns in Paris 2009/10 // Atmos. Meas. Tech. 2015. V. 8. P. 2827–2852. DOI: 10.5194/amt-8-2827-2015.
16. Shaiganfar R., Beirle S., Denier van der Gon H., Jonkers S., Kuenen J., Petetin H., Zhang Q., Beekmann M., Wagner T. Estimation of the Paris NOx emissions from mobile MAX-DOAS observations and CHIMERE model simulations during the MEGAPOLI campaign using the closed integral method // Atmos. Chem. Phys. 2017. V. 17. P. 7853–7890. DOI: 10.5194/acp-17-7853-2017.
17. Wu F., Li A., Xie P., Chen H., Hu Z., Zhang Q., Liu J., Liu W. Emission flux measurement error with a mobile DOAS system and application to NOx flux observations // Sensors. 2017. V. 17. P. 231. DOI: 10.3390/s17020231.
18. Wu F., Xie P., Li A., Mou F., Chen H., Zhu Y., Zhu T., Liu J., Liu W. Investigations of temporal and spatial distribution of precursors SO2 and NO2 vertical columns in the North China Plain using mobile DOAS // Atmos. Chem. Phys. 2018. V. 18. P. 1535–1554. DOI: 10.5194/acp-18-1535-2018.
19. Davis Z.Y.W., Baray S., McLinden C.A., Khanbabakhani A., Fujs W., Csukat C., Debosz J., McLaren R. Estimation of NOx and SO2 emissions from Sarnia, Ontario, using a mobile MAX-DOAS (Multi-AXis Differential Optical Absorption Spectroscopy) and a NOx analyzer // Atmos. Chem. Phys. 2019. V. 19. P. 13871–13889. DOI: 10.5194/acp-19-13871-2019.
20. Cheng X., Ma J., Jin J., Guo J., Liu Y., Peng J., Ma X., Qian M., Xia Q., Yan P. Retrieving tropospheric NO2 vertical column densities around the city of Beijing and estimating NOx emissions based on car MAX-DOAS measurements // Atmos. Chem. Phys. 2020. V. 20. P. 10757–10774. DOI: 10.5194/acp-20-10757-2020.
21. Huang Y., Li A., Xie P., Hu Z., Xu J., Fang X., Ren H., Li X., Dang B. NOx emission flux measurements with multiple mobile-DOAS instruments in Beijing // Remote Sens. 2020. V. 12, N 16. P. 2527. DOI: 10.3390/rs12162527.
22. Merlaud A., Belegante L., Constantin D.-E., Den Hoed M., Meier A.C., Allaart M., Ardelean M., Arseni M., Bösch T., Brenot H., Calcan A., Dekemper E., Donner S., Dörner S., Balanica Dragomir M.C., Georgescu L., Nemuc A., Nicolae D., Pinardi G., Richter A., Rosu A., Ruhtz T., Schönhardt A., Schuettemeyer D., Shaiganfar R., Stebel K., Tack F., Nicolae Vâjâiac S., Vasilescu J., Vanhamel J., Wagner T., Van Roozendael M. Satellite validation strategy assessments based on the AROMAT campaigns // Atmos. Meas. Tech. 2020. V. 13. P. 5513–5535. DOI: 10.5194/amt-13-5513-2020.
23. Ionov D., Poberovskii A. Quantification of NOx emission from St. Petersburg (Russia) using mobile DOAS measurements around entire city // Int. J. Remote Sens. 2015. V. 36, N 9. P. 2486–2502. DOI: 10.1080/01431161.2015.1042123.
24. Ионов Д.В., Поберовский А.В. Интегральная эмиссия окислов азота с территории Санкт-Петербурга по данным мобильных измерений и результатам численного моделирования // Изв. РАН. Физ. атмосф. и океана. 2017. Т. 53, № 2. С. 232–241.
25. Ionov D.V., Poberovskii A.V. Observations of urban NOx plume dispersion using the mobile and satellite DOAS measurements around the megacity of St. Petersburg (Russia) // Int. J. Remote Sens. 2019. V. 40, N 2. P. 719–733. DOI: 10.1080/01431161.2018.1519274.
26. Ionov D.V., Makarova M.V., Kostsov V.S., Foka S.C. Assessment of the NOх integral emission from the St. Petersburg megacity by means of mobile DOAS measurements combined with dispersion modelling // Atmos. Pollut. Res. 2022. V. 13, N 12. P. 101958. DOI: 10.1016/j.apr.2022.101598.
27. Ионов Д.В., Макарова М.В., Косцов В.С. Экспериментальные оценки антропогенной эмиссии окислов азота с территории Санкт-Петербурга по данным многолетних мобильных измерений // Изв. РАН. Физ. атмосф. и океана. 2024. Т. 60, № 2. С. 251–263.
28. Makarova M.V., Alberti C., Ionov D.V., Hase F., Foka S.C., Blumenstock T., Warneke T., Virolainen Y., Kostsov V., Frey M., Poberovskii A.V., Timofeyev Y.M., Paramonova N., Volkova K.A., Zaitsev N.A., Biryukov E.Y., Osipov S.I., Makarov B.K., Polyakov A.V., Ivakhov V.M., Imhasin H.Kh., Mikhailov E.F. Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019 // Atmos. Meas. Tech. 2021. V. 14. P. 1047–1073. DOI: 10.5194/amt-14-1047-2021.
29. Elansky N. Air quality and CO emissions in the Moscow megacity // Urban Clim. 2014. V. 8. P. 42–56. DOI: 10.1016/j.uclim.2014.01.007.
30. Ионов Д.В., Поберовский А.В. Двуокись азота в воздушном бассейне Санкт-Петербурга: дистанционные измерения и численное моделирование // Изв. РАН. Физ. атмосф. и океана. 2012. Т. 48, № 4. C. 422–433.
31. Поберовский А.В., Шашкин А.В., Ионов Д.В., Тимофеев Ю.М. Вариации содержания NO2 в районе Санкт-Петербурга по наземным и спутниковым измерениям рассеянного солнечного излучения // Изв. РАН. Физ. атмосф. и океана. 2007. Т. 43, № 4. C. 547–556.
32. Oda T., Maksyutov S. A very high-resolution (1 km ´ 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights // Atmos. Chem. Phys. 2011. V. 11. P. 543–556. DOI: 10.5194/acp-11-543-2011.
33. Tan W., Liu C., Wang S., Liu H., Zhu Y., Su W., Hu Q., Liu J. Long-distance mobile MAX-DOAS observations of NO2 and SO2 over the North China Plain and identification of regional transport and power plant emissions // Atmos. Res. 2020. V. 245. P. 105037. DOI:10.1016/j.atmosres.2020.105037.
34. Fujinawa T., Kuze A., Suto H., Shiomi K., Kanaya Y., Kawashima T., Kataoka F., Mori S., Eskes H., Tanimoto H. First concurrent observations of NO2 and CO2 from power plant plumes by airborne remote sensing // Geophys. Res. Lett. 2021. V. 48. P. e2021GL092685. DOI: 10.1029/2021GL092685.34.