Vol. 27, issue 01, article # 10

Rakhimov R. F., Kozlov V. S., Tumakov A. G., Shmargunov V. P. Optical and microphysical properties of the mixed smoke according to the polarization spectronephelometric measurements. // Optika Atmosfery i Okeana. 2014. V. 27. No. 01. P. [in Russian].
Copy the reference to clipboard
Abstract:

A polarization spectronephelometer was used for measurements of spectral coefficients of angular aerosol scattering in mixed smokes during their 3-day evolution in the Large Aerosol Chamber of IAO SB RAS (1800 m3). The smokes were formed as a mixture of products of thermal decomposition of coniferous wood materials (pine) from sources of low-temperature pyrolysis (~ 400°C) and high-temperature open combustion with flame (~ 800°C). The inverse problem was solved to study peculiarities in formation of the disperse composition of smokes and the complex refractive index of smoke particles for three size ranges.
It is shown that the dynamics of formation and evolution of mixed smokes is determined mostly by the contribution of the strongly absorbing ultra-fine fraction (particle radius of < 150 nm, the imaginary part of the refractive index of particulate matter of ~ 0.4–0.8 close to that of black carbon) to the optical properties. Medium and coarse particles (radius of > 200 nm) are moderately and weakly absorbing: the imaginary part of refractive index is ~ 0.03–0.15. The absorptivity of mixed smoke is high, and the single scattering albedo at the wavelength 525 nm achieves low values of ~ 0.60–0.45, decreasing during the smoke storage.
At the smoke generation, bimodal particle size distributions with the medium of 350–400 nm and coarse of ~ 760 nm modes are formed. After long storage of the smoke, the particle size spectrum is characterized by a single mode of ~ 600 nm, and the effective radius of the particles increases from 160 nm to 330 nm.
It is shown that the mutual dynamics between the volume backscattering and extinction coefficients, single scattering albedo and effective radius of particles are described by statistically significant linear correlations.

Keywords:

mixed smoke, polarization spectronephelometry, inverse problem, particle’s size distribution, complex index of refraction, soot

References:

1. Kondrat'ev K.Ja., Grigor'ev Al.A. Lesnye pozhary kak komponent prirodnoj jekodinamiki // Optika atmosf. i okeana. 2004. V. 17, N4. P. 279–292.
2. Konev Je.V. Fizicheskie osnovy gorenija rastitel'nyh materialov. Novosibirsk: Nauka, 1977. 237 p.
3. Grishin A.M. Matematicheskoe modelirovanie lesnyh pozharov i novye sposoby bor'by s nimi. Novosibirsk: Nauka, 1992. 408 p.
4. Samsonov Ju.N., Belenko O.A., Ivanov V.A. Dispersnye i morfologicheskie harakteristiki dymovoj ajerozol'noj jemissii ot pozharov v boreal'nyh lesah Sibiri // Optika atmosf. i okeana. 2010. V. 23, N6. P. 423–431.
5. Ajerozol' i klimat / Pod red. K.Ja. Kondrat'eva. L.: Gidrometeoizdat, 1991. 542 p.
6. Rozenberg G.V. Tonkodispersnyj ajerozol' i klimat // Izv. AN SSSR. Fiz. atmosf. i okeana. 1982. V. 18, N11. P. 1192–1198.
7. Jacobson M.Z. Strong radiative heating due to the mixing slate of black carbon in atmospheric aerosols // Nature (Gr. Brit.). 2001. V. 409. P. 695–697.
8. Kozlov V.S., Panchenko M.V., Jausheva E.P. Submikronnyj ajerozol' i sazha prizemnogo sloja v sutochnom hode // Optika atmosf. i okeana. 2010. V. 23, N7. P. 561–568.
9. Kozlov V.S., Panchenko M.V., Yausheva E.P. Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia // Atmos. Environ. 2008. V. 42, N 11. P. 2611–2620.
10. Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: an investigative review // Aer. Sci. and Technol. 2006. V. 40, N 1. P. 27–67.
11. Rahimov R.F., Makienko Je.V. Nekotorye metodicheskie dopolnenija k resheniju obratnoj zadachi dlja vosstanovlenija parametrov dispersnoj struktury dymov smeshannogo sostava // Optika atmosf. i okeana. 2010. V. 23, N3. P. 183–190.
12. Rahimov R.F., Makienko Je.V., Shmargunov V.P. Variacii opticheskih postojannyh i spektra razmerov dymovyh ajerozolej, obrazovannyh pri termicheskom razlozhenii raznosortnyh drevesnyh materialov // Optika atmosf. i okeana. 2010. V. 23, N4. P. 248–258.
13. Rahimov R.F., Makienko Je.V., Kozlov V.S. Vlijanie kory drevesnyh materialov na optiko-mikrofiziche-skie svojstva piroliznyh dymov // Optika atmosf. i okeana. 2010. V. 23, N5. P. 412–418.
14. Rahimov R.F., Makienko Je.V., Panchenko M.V. Optiko-mikrofizicheskie svojstva smeshannyh dymov ot neskol'kih raznesennyh istochnikov // Optika atmosf. i okeana. 2010. V. 23, N8. P. 675–684.
15. Rahimov R.F., Kozlov V.S., Shmargunov V.P. O vremennoj dinamike kompleksnogo pokazatelja prelomlenija i mikrostruktury chastic po dannym spektronefelometricheskih izmerenij v smeshannyh dymah // Optika atmosf. i okeana. 2011. V. 24, N10. P. 887–897.
16. Kozlov V.S., Shmargunov V.P., Tumakov A.G., Panchenko M.V., Rahimov R.F. Uglovoj poljarizacionnyj spektronefelometr APSN-02 dlja izuchenija optiko-mikrofizicheskih svojstv atmosfernogo submikronnogo ajerozolja // Ajerozoli Sibiri. XVIII Rabochaja gruppa: Tezisy dokl. Tomsk: Izdatelstvo IOA SO RAN, 2011. P. 78.
17. Makienko Je.V., Naac Je.V. Obratnye zadachi ajerozol'nogo svetorassejanija primenitel'no k lazernoj lokacii atmosfernyh zagrjaznenij prizemnogo sloja // Problemy distancionnogo zondirovanija atmosfery. Tomsk: IOA SO AN SSSR, 1976. P. 42–51.
18. Rahimov R.F., Kozlov V.S., Tumakov A.G., Shmargunov V.P. Opticheskie i mikrofizicheskie svojstva piroliznogo dyma po dannym opticheskih izmerenij 4-volnovym spektronefelometrom // Optika atmosf. i okeana. 2013. V. 26, N12. P.1045–1053.
19. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. Sovremennye problemy atmosfernoj optiki. V. 2. L.: Gidrometeoizdat, 1986. 256 p.
20. Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lazernogo zondirovanija. Pt. 3. Spektral'nye osobennosti vertikal'nogo raspredelenija opticheskih harakteristik ajerozolja // Optika atmosf. i okeana. 2011. V. 24, N3. P. 216–223.
21. Bychkov V.V., Perezhogin A.S., Perezhogin A.S., Shevcov B.M., Marichev V.N., Matvienko G.G., Belov A.S., Cheremisin A.A. Lidarnye nabljudenija pojavlenija ajerozolej v srednej atmosfere Kamchatki v 2007–2011 years. // Optika atmosf. i okeana. 2012. V. 25, N1. P. 87–93.
22. Matvienko G.G., Pogodaev V.A. Optika atmosfery i okeana – neokonchennyj urok vzaimodejstvija opticheskogo izluchenija so sredoj rasprostranenija // Optika atmosf. i okeana. 2012. V. 25, N1. P. 5–10.
23. Matvienko G.G., Banah V.A., Bobrovnikov S.M., Burlakov V.D., Veretennikov V.V., Kaul' B.V., Krekov G.M., Marichev V.N. Razvitie tehnologij lazernogo zondirovanija atmosfery // Optika atmosf. i okeana. 2009. V. 22, N10. P. 915–930.
24. Gorchakov G.I., Emilenko A.S., Sviridenkov M.A. Odnoparametricheskaja model' prizemnogo ajerozolja // Izv. AN SSSR. Fiz. atmosf. i okeana. 1981. V. 17, N1. P. 39–49.
25. Veretennikov V.V., Kabanov M.V., Panchenko M.V., Fadeev V.Ja. Primenenie odnoparametricheskoj modeli dymki v zadachah lazernogo zondirovanija // Optika atmosf. 1988. V. 1, N2. P. 25–32.