Vol. 27, issue 01, article # 4

Starikov V. I. On the ambiguity of intermolecular interaction potential determined from the spectroscopic data. // Optika Atmosfery i Okeana. 2014. V. 27. No. 01. P. [in Russian].
Copy the reference to clipboard
Abstract:

It was shown that interaction potentials for the NH3–Ar and NН3–Не systems are determined ambiguously from the experimental data for the broadening coefficients γ of absorption spectral lines of NH3 molecule. The different sets of model interaction potential given the same accuracy of calculation of coefficients γ for room temperature determine these coefficients for other temperatures in different ways. This difference is more visible for the NН3–Не system. For NH3–Ar system this difference becomes apparent for the lines with small value of rotational quantum number K, for KJ this effect decreases.

Keywords:

intermolecular potential, half-widths, NH3–Ar, NH3–He

References:

1. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73. P. 5432–5450.
2. Kaplan I.G. Vvedenie v teoriju mezhmolekuljarnyh vzaimodejstvij. M.: Nauka, 1982. 311 p.
3. Buldyreva J., Lavrent’eva N.N., Starikov V.I. Collisional Line Broadening and Shifting of Atmosphyric Gase. A practical Guide for Line Shape Modeling by Current Semi-classical Approaches. London: Imperical College Press, 2010. 323 p.
4. Girshfelder Dzh.O., Kurtis Ch.F., Bred R. Molekuljarnaja teorija gazov i zhidkostej. M.: Izdatelstvo inostr. literatury, 1961. 929 p.
5. Starikov V.I. Noble gas broadening calculation for fundamental bands of H2S // J. Comput. Methods in Sci. and Eng. 2010. V. 10, N 3–6. P. 599–608.
6. Starikov V.I. K raschetu temperaturnoj zavisimosti kojefficientov ushirenija vrashhatel'nyh linij pogloshhenija molekuly H2S davleniem gelija // Optika atmosf. i okeana. 2012. V. 25, N 4. P. 301–306.
7. Solodov A.M., Starikov V.I. Helium-induced Halfwidths and Line Shifts of Water Vapor Transitions of the ν1 + ν2 and ν23 Bands // Mol. Phys. 2009. V. 107. P. 43–51.
8. Petrova Т.M., Solodov A.M., Starikov V.I., Solodov A.A. Measurements and calculations of He-broadening and -shifting parameters of the water vapor transitions of the  ν1 + ν2 + ν3 band // Mol. Phys. 2012. V. 110, iss. 14. P.1493–1503.
9. Smith E.W., Giraud M., Cooper J. A semiclassical theory for spectral line broadening in molecules // J. Chem. Phys. 1976. V. 65. P. 1256–1267.
10. Dhib M., Bouanich J.P., Aroui H., Broquier M. Collisional broadening coefficients in the ν4 band of NH3 perturbed by He and Ar // J. Mol. Spectrosc. 2000. V. 202. P. 83.
11. Dhib M., Echargui M.A., Aroui H., Orphal J., Hartmann J.M. Line shift and mixing in the ν4 and ν2 band of NH3 perturbed by H2 and Ar // J. Mol. Spectrosc. 2005. V. 233. P. 138–148.
12. Dhib M., Echargui M.A., Aroui H., Orphal J. Shif-ting and line mixing parameters in the ν4 band of NH3 perturbed by CO2 and He: Experimental results and theoretical calculations // J. Mol. Spectrosc. 2006. V. 238. P. 168–177.
13. Starikov V.I. Raschet relaksacionnyh parametrov perekryvajushhihsja linij molekuly ammiaka v sluchae ih ushirenija davleniem argona i gelija // Optika i spektroskopija. 2013. V. 14, N 1. P. 1–11.
14. Khristenko S.V., Maslov A.I., Shevelko V.P. Molecules and their Spectroscopic Properties. Berlin: Springer, 1998. 174 p.