Vol. 27, issue 01, article # 5

Zapevalov A. S., Lebedev N. E. Simulation of the sea surface statistical characteristics at the remote sensing in the optical range. // Optika Atmosfery i Okeana. 2014. V. 27. No. 01. P. [in Russian].
Copy the reference to clipboard
Abstract:

Currently, the most widely used distribution of slopes of the sea surface is Gram–Charlier distribution. Limitations of its use in the simulation of light reflection from the sea surface are analyzed. It is shown that Gram–Charlier distribution does not allow one to build optical image throughout the full sensing range of angles for low Earth orbit spacecraft optical scanners. Empirical relations between statistical moments of sea surface slopes and their angles are obtained.

Keywords:

slopes of the sea surface, slope distribution, angles of slope distribution, optical image, Gram–Charlier distribution

References:

1. Korotaev G.K., Pustovojtenko V.V., Terehin Ju.V. Sputnikovaja okeanologija: stanovlenie, razvitie, perspektivy // Jekologicheskaja bezopasnost' pribrezhnoj i shel'fovoj zon. 2006. Issue 14. P. 324–348.
2. Pustovojtenko V.V. Sputnikovye sredstva distancionnogo zondirovanija v sisteme jekologicheskogo monitoringa morskih akvatorij // Jekologicheskaja bezopasnost' pribrezhnoj i shel'fovoj zon. 2003. Issue. 9. P. 125–137.
3. Cox C., Munk W. Measurements of the roughness of the sea surface from photographs of the sun glitter // J. Opt. Soc. Amer. 1954. V. 44, N 11. P. 838–850.
4. Zapevalov A.S. Zavisimost' statistiki blikov zerkal'nogo otrazhenija pri lazernom zondirovanii morskoj poverhnosti ot harakteristik ee lokal'nyh uklonov // Optika atmosf. i okeana. 2000. V. 13, N12. P. 1123–1127.
5. Bréon F.M., Henriot N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions // J. Geophys. Res. C. 2006. V. 111, N 6.  DOI: 10.1029/2005JC003343.
6. Sayer A.M., Thomas G.E., Grainger R.G. A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals // Atmos. Measur. Techniques. 2010. V. 3, N 4. P. 1023–1098.
7. Su Y.-F., Liou J.-J., Hou J.-C., Hung W.-C., Hsu S.-M., Lien Y.-T., Su M.-D., Cheng K.-S. A multivariate model for coastal water quality mapping using satellite remote sensing images // Sensors. 2008. V. 8, N 10. P. 6321–6339. DOI: 10.3390/s8106321.
8. Zapevalov A.S. Izmenchivost' harakteristik lokal'nyh uklonov morskoj poverhnosti // Prikl. gidromeh. 2005. V. 7(79), N 1. P. 17–21.
9. Tatarskii V.I. Multi-Gaussian representation of the Cox–Munk distribution for slopes of wind-driven waves // J. Atmos. and Ocean. Technol. 2003. V. 20. P. 1697–1705.
10. Longuet-Higgins M.S. The effect of non-linearities on statistical distribution in the theory of sea waves // J. Fluid Mech. 1963. V. 17, N 3. P. 459–480.
11. Zapevalov A.S., Ratner Ju.B. Jeffekty kvazigaussovogo haraktera raspredelenija uklonov morskoj poverhnosti pri lazernom zondirovanii // Optika atmosf. i okeana. 2002. V. 15, N10. P. 925–928.
12. Zapevalov A.S. Statisticheskie modeli vzvolnovannoj morskoj poverhnosti. Dlja zadach distancionnogo zondirovanija. Saarbrücken: LAP LAMBERT Academic Publishing, 2012. 69 p.
13. Kendall M.Dzh., St'juart A. Teorija raspredelenij / Per. s angl. M.: Nauka, 1966. 587 p.
14. Hristoforov G.N., Zapevalov A.S., Babij M.V. Statisticheskie harakteristiki uklonov morskoj poverhnosti pri raznyh skorostjah vetra // Okeanologija. 1992. V. 32, Issue 3. P. 452–459.
15. Zeisse C.R. Radiance of the ocean horizon // J. Opt. Soc. Amer. A. 1995. V. 12, N 9. P. 2022–2030.
16. Xiong X., Barnes W. An overview of MODIS radiometric calibration and characterization // Adv. in Atmos. Sci. 2006. V.23, N 1. P. 69–79.
17. Zapevalov A.S., Pustovojtenko V.V. Modelirovanie plotnosti verojatnostej uklonov morskoj poverhnosti v zadachah rassejanija radiovoln // Izv. vuzov. Radiofiz. 2010. V. 53, N2. P. 110–121.