Vol. 27, issue 03, article # 2

Suvorina A. S., Veselovskii I. A., Korenskii M. Yu., Kolgotin A. V. The use of the linear estimation method in determination of integral parameters of atmospheric aerosol from spectral measurements of its optical depth. // Optika Atmosfery i Okeana. 2014. V. 27. No. 03. P. 182-191 [in Russian].
Copy the reference to clipboard
Abstract:

Linear estimation method is used to determine the integral parameters of atmospheric aerosol, such as volume density and effective radius from the spectra of aerosol optical depth measured by a sun photometer. For approbation of the method, three-month series of optical depth at seven wavelengths for four cites of AERONET network characterized by different aerosol types: urban, biomass burning, desert dust, and marine, were chosen. Comparison of the results with retrievals from standard AERONET algorithm shows a good agreement between two methods. However, linear estimation technique allows retrieving time series of particle parameters from direct sun measurements with a high temporal resolution of about several minutes. This method can be used in the instruments that do not provide angular scanning of sky radiance, e.g., the PFR/GAW sun photometers network.

Keywords:

atmospheric aerosol (aerosols in atmosphere), retrieve of atmospheric aerosol parameters, linear estimation method

References:

1. IPCC 2007: Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of Intergovernmental Panel on Climate Change / Ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 2007, 966 p.
2. Hansen J., Sato M., Kharecha P., von Schuckmann K. Earth’s energy imbalance and implications // Atmos. Chem. Phys. 2011. V. 11, N 24. P. 13421–13449.
3. Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16.
4. Dubovik O., King M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105, N 16. P. 20673–20696.
5. Smirnov A., Holben B.N., Eck T.F., Dubovik O., Slutsker I. Cloud screening and quality control algorithms for AERONET database // Remote Sens. Environ. 2000. V. 73, iss. 3. P. 337–349.
6. King M., Byrne D., Herman B., Reagan J. Aerosol size distributions obtained by the inversion of spectral optical depth measurements // J. Atmos. Sci. 1978. V. 35, iss. 11. P. 2153–2167.
7. Veselovskii I., Kolgotin A., Griaznov V., Müller D., Wandinger U., Whiteman D. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multi-wavelength lidar sounding // Appl. Opt. 2002. V. 41, iss. 18. P. 3685–3699.
8. Ansmann A., Müller D. Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere. N.Y.: Springer, 2005. P. 105–141.
9. Müller D., Wandinger U., Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory // Appl. Opt. 1999. V. 38, N 12. P. 2346–2357.
10. Thomason L.W., Osborn M.T. Lidar conservation parameters derived from SAGE II extinction measurements // Geophys. Res. Lett. 1992. V. 19, N 16. P. 1655–1658.
11. Donovan D., Carswell A. Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements // Appl. Opt. 1997. V. 36, iss. 36. P. 9406–9424.
12. Veselovskii I., Dubovik O., Kolgotin A., Korenskiy M., Whiteman D.N., Allakhverdiev K., Huseyinoglu F. Linear estimation of particle bulk parameters from multi-wavelength lidar measurements // Atmos. Meas. Technol. 2012. V. 5, Special iss. P. 1135–1145.
13. De Graaf M., Donovan D., Apituley A. Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principal component analysis // Appl. Opt. 2013. V. 52, iss. 10. P. 2173–2186.
14. Dubovik O., Holben B.N., Eck T.F., Smirnov A., Kaufman Y.J., King M.D., Tanré D., Slutsker I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations // J. Atmos. Sci. 2002. V. 59, iss. 3. P. 590–608.
15. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. N.Y.: Wiley-Interscience, 1983. 541 p.
16. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles. San-Diego: Academic Press, 2000. 690 p.
17. Dubovik O., Sinyuk A., Lapyonok T., Holben B.N., Mishchenko M., Yang P., Eck T.F., Volten H., Munoz O., Veihelmann B., van der Zande W.J., Leon J.-F., Sorokin M., Slutsker I. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust // J. Geophys. Res. 2006. V. 111. D11208. DOI: 10.1029/2005JD006619.
18. Veselovskii I., Dubovik O., Kolgotin A., Lapyonok T., Di Girolamo P., Summa D., Whiteman D.N., Mishchenko M., Tanré D. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements // J. Geophys. Res. 2010. V. 115. D21203. DOI: 10.1029/2010JD014139.
19. Twomey S. Introduction to the Mathematics of Inversion in Remote Sensing and Linear Measurements. N.Y.: Elsevier, 1977. 243 p.
20. Ansmann A., Petzold A., Kandler K., Tegen I., Wendisch M., Müller D., Weinzierl B., Müller T., Heintzenberg J. Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned? // Tellus B. 2011. V. 63, iss. 4. P. 403–429.
21. WMO/GAW Experts workshop on a global surface-based network for long term observations of column aerosol optical properties, Davos 2004 / Ed. U. Baltensperger, L. Barrie, C. Wehrli. GAW N 162. WMO/TD-No. 1287. Available at: http://www.wmo.ch/pages/prog/arep/gaw/gaw-reports.html