Vol. 27, issue 05, article # 10

Lysenko S. A., Kugeiko M. M. Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions. // Optika Atmosfery i Okeana. 2014. V. 27. No. 05. P. 435–442 [in Russian].
Copy the reference to clipboard
Abstract:

A method has been proposed for determining the mass concentration of airborne particles with sizes ≤ 1; ≤ 2,5; ≤ 10, and  > 10 mm by measuring the light scattering coefficients of the investigated air at wavelengths λ1≤0,55 and λ2 ≥1,0 mm and scattering angles θ1 ≤ 5° and θ2 = 15÷45°. Mass concentrations of airborne particles are calculated on the basis of their stable statistical relationships with measured coefficients. Analytical expressions, approximating those statistical relationships, have been obtained on the basis of optical-microphysical model of urban aerosol, adopted by World Meteorological Organization, with varying concentrations, size distribution parameters, and complex refractive index of the particles of aerosol components (soot, water-soluble and dust). Statistical relationships obtained in the modeling approach have been compared with independent numerical and experimental data. The errors of the developed method in the overall variability of urban aerosol microphysical parameters have been evaluated.

Keywords:

urban aerosol, mass concentration, nephelometric method, multiple regressions

References:

1. Waggones A.P., Weiss R.E., Ahlquist N.C., Covert D.S., Will S., Charlson R.J. Optical characteristics of atmospheric aerosols // Atmos. Envirom. 1981. V. 15, N 10/11. P. 1891–1909.
2. Sviridenkov M.A., Emilenko A.S., Isakov A.A., Kopeikin V.M. Comparison of black carbon content, aerosol optical and microphysical characteristics in Moscow and the Moscow region // Fifteenth ARM Science Team Meeting Proceedings, March 14–18, 2005 / Daytona Bech, Florida, 2005. P. 140–147.
3. Jung J., Lee H., Kim J.J., Liu X., Zhang Y., Hu M., Sogimoto N. Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of air quality research in Beijing // J. Geophys. Res. 2009. V. 114. D00G02. DOI: 10.1029/2008JD010337.
4. Lysenko S.A., Kugejko M.M. Vosstanovlenie massovoj koncentracii pyli v promyshlennyh vybrosah iz rezul'tatov opticheskogo zondirovanija // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 960–968.
5. Lysenko S.A., Kugejko M.M. Spektronefelometricheskie metody opredelenija mikrofizicheskih harakteristik pyli v aspiracionnom vozduhe i othodjashhih gazah cementnyh proizvodstv // Zh. prikl. spektroskopii. 2012. V. 79, N 1. P. 66–76.
6. Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent zemnoj atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
7. World Meteorological Organization. World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation. Switzerland, Geneva. Report WCP-112, WMO/TD-24. 1986. 60 p.
8. ISO13320. Particle size analysis – Laser diffraction methods. 2009. 51 p.
9. Veihelmann B., Konert M., van der Zande W.J. Size distribution of mineral aerosol: using light-scattering models in laser particle sizing // Appl. Opt. 2006. V. 45, N 23. P. 6022–6029.
10. Barun V.V., Ivanov A.P., Osipenko F.P., Chaikovsky А.P. Peculiarities in spectral behavior of optical characteristics of urban aerosols by laser sensing data and model estimations // Proc. SPIE. 1999. V. 3983. P. 279–289.
11. Zolotarev V.M., Morozov V.N., Smirnova E.V. Opticheskie postojannye prirodnyh i tehnicheskih sred: Spravochnik. L.: Himija, 1984. 216 p.
12. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat, 1986. 256 p.
13. Ivlev L.S., Andreev S.D. Opticheskie svojstva atmosfernyh ajerozolej. L.: Izdatelstvo LGU, 1986. 359 p.
14. Krekov G.M., Zvenigorodskij S.G. Opticheskaja model' srednej atmosfery. Novosibirsk: Nauka, 1990. 278 p.
15. d'Almeida G.A., Koepke P., Shettle E. Atmospheric aerosols: global climatology and radiative characteristics. Hampton, USA: A. Deepak Publishing, 1991. 549 p.
16. Rothman L.S., Rinsland C.P., Goldman A., Massie S.T., Edwards D.P., Flaud J.-M., Perrin A., Camy-Peyret C., Dana V., Mandin J.-Y., Schroeder J., Mccann A., Gamache R.R., Watson R.B., Yoshino K., Chance K.V., Jucks K.W., Brown L.R., Nemtchinov V., Varanasi P. The HITRAN molecular spectroscopic database and hawks (HITRAN Atmospheric Workstation): 1996 EDITION // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 60, N 5. P. 665–710.
17. Kondrat'ev K.Ja., Moskalenko N.I., Pozdnjakov D.V. Atmosfernyj ajerozol'. L.: Gidrometeoizdat, 1983. 204 p.
18. Mishchenko M.I., Travis L.D., Lacis A.A. Scattering, absorption, and emission of light by small particles. New York: NASA Goddard Institute for space studies, 2004. 445 p.
19. Sviridenkov M.A. Approksimacija van de Hjulsta i mikrostruktura pylevogo ajerozolja // Izv. RAN. Fiz. atmosf. i okeana. 1993. V. 29, N 2. P. 218–221.
20. Pol'kin V.V., Artamonov Ju.V., Bunjakin V.P., Kislicyn S.P. Prostranstvennye osobennosti raspredelenija atmosfernogo ajerozolja i gidrometeorologicheskih parametrov po dannym poputnyh izmerenij na NJeS «Akademik Fedorov» v 2009 year. // Sistemy kontrolja okruzhajushhej sredy. 2010. Issue 13. P. 146–152.
21. Trier A., Cabrini N., Ferrer J. Correlations between urban atmospheric light extinction coefficients and particle mass concentrations // Atmosfera. 1997. V. 10, N 3. P. 151–160.
22. Adam M., Pahlow M., Kovalev V., Ondov J.M., Parlange M.B., Nair N. Aerosol optical characterization by nephelometer and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion // J. Geophys. Res. 2004. V. 109. D16502. DOI: 10.1029/2003JD004047.
23. Glazkova A.A., Kuznecova I.N., Shalygina I.Ju., Semutnikova E.G. Sutochnyj hod koncentracii ajerozolja (RM10) letom v Moskovskom regione // Optika atmosf. i okeana. 2012. V. 25, N 6. P. 495–500.