Vol. 27, issue 05, article # 13

Kulikov V. A., Shmakov A. V., Fedorova O. V. Convective water cell as a model of long optical path. // Optika Atmosfery i Okeana. 2014. V. 27. No. 05. P. 456-458 [in Russian].
Copy the reference to clipboard

We learned statistics of intensity fluctuations after laser radiation propagation through a convective water cell. We demonstrated the similarity of water cell fluctuations and fluctuations of atmospheric long path by using normalized dispersion and Rytov index. Numerical simulations of both long and short paths have been performed with taking into account the probability density function. We showed that a water cell can served a laboratory physical model of long atmospherical optical paths.


optical paths, turbulence, dispersion of intensity fluctuations


1. Zuev V.E., Banah V.A., Pokasov V.V. Optika turbulentnoj atmosfery. L.: Gidrometeoizdat, 1988. 271 p.
2. Lyke S.D., Voelz D.G., Roggtman M.G. Probability density of aperture averaged irradiance fluctuations for long range free space optical communication links // Appl. Opt. 2009. V. 48, N 33. P. 6511–6527.
3. Kirchengast G., Schweitzer S. Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space // Geophys. Res. Lett. 2011. V. 8, N 13. P. L1307.
4. Perlot N., Giggenbach D., Henniger H., Horwath J., Knapek M., Zettl K. Measurements of the beam-wave fluctuations over a 142 km atmospheric path // Proc. SPIE. 2006. V. 6304. P. 63041O.
5. Vorontsov M.A., Carhart G.W., Gudimetla V.S.R., Weyrauch T., Stevenson E., Lachinova S.L., Beresnev L.A., Liu J., Rehder K., Riker J.F. Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons // Proc. 2010 AMOS Confer. 2010. P. E18.
6. Gurvich A.S., Gorbunov M.E., Fedorova O.V., Kirchengast G., Proschek V., Abad G.G., Tereszchuk K.A. Spatiotemporal structure of a laser beam over 144 km in a Canary Islands experiment // Appl. Opt. 2012. V. 51, N 30. P. 7374–7383.
7. Gurvich A.S., Kallistratova M.A., Martvel' F.E. An investigation of strong fluctuations of light intensity in a turbulent medium at a small wave parameter // Radiophys. Quantum. Electron. 1977. V. 20, N 7. P. 705–714.
8. Bissonnette L.R. Atmospheric scintillation of optical and infrared waves: a laboratory simulation // Appl. Opt. 1977. V. 16, N 8. P. 2242–2251.
9. Fleck J.A., Morris J.R., Feit M.D. Time-dependent propagation of high energy laser beams through the atmosphere // Appl. Phys. 1976. V. 10, N 2. P. 129–160.
10. Martin J.M., Flatte S.M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media // Appl. Opt. 1988. V. 27, N 11. P. 2111–2126.
11. Ahmanov S.A., Nikitin S.Ju. Fizicheskaja optika. M.: Nauka, Izd. MGU, 2004. 654 p.
12. Kulikov V.A., Shmalhausen V.I. Laser beam propagation through the turbulence with plumes and Kolmogorov description // ArXiv. 2013. P. arXiv:1310.5273.