Vol. 27, issue 08, article # 2

Firsov K. M., Chesnokova T. Yu., Bobrov E. V. Role of water vapor continual absorption in the atmospheric longwave radiative processes of the surface layer in the Lower Volga region. // Optika Atmosfery i Okeana. 2014. V. 27. No. 08. P. 665-672 [in Russian].
Copy the reference to clipboard
Abstract:

Analytical formulae to estimate a sensitivity of downward longwave radiative fluxes to the atmospheric total water vapor content in the absorption bands and the atmospheric transparency windows are obtained. A regression dependence of the CO2 radiative forcing on total water vapor content for the Lower Volga region is calculated. The role of Н2О continual absorption is investigated and it is shown that the CO2 radiative forcing depends strongly on the continuum value. The atmospheric conditions are defined, when the contribution of the H2O foreign continuum to the downward radiative fluxes is maximal.

Keywords:

continual absorption, transfer of radiation, radiative forcing

References:

1. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R. «IPCC, 2007: Changes in Atmospheric Constituents and in Radiative Forcing» in Climate Change; 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change // Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Mar-quis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge Univ., Cambridge, UK, USA, 2007.
2. Held I.M., Soden B.J. Robust Responses of the Hydrological Cycle to Global Warming // J. Climate. 2006. V. 19, N 21. P. 5686–5699.
3. Stephens G.L., Wild M., Stackhouse P.W., Ecuyer T.L., Kato S., Henderson D.S. The Global Character of the Flux of Downward Longwave Radiation // J. Сlimate. 2012. V. 25, N 7. P. 2329–2340. DOI: 10.1175/JCLI-D-11-00262.1.
4. Belan B.D., Krekov G.M. Vlijanie antropogennogo faktora na soderzhanie parnikovyh gazov v troposfere. 1. Metan // Optika atmosf. i okeana. 2012. V. 25, N 4. P. 361–373.
5. Shine K.P., Ptashnik I.V., Radel G. The Water Vapour Continuum: Brief History and Recent Developments // Surv. Geophys. 2012. V. 33, N 3–4. P. 535–555.
6. Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 12–13. P. 2291–2302.
7. Baranov Yu.I., Lafferty W.J. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm–1 atmospheric windows // Phil. Trans. Roy. Soc. A. 2012. V. 370, N 1968. P. 2578–2589.
8. Chesnokova T.Ju., Zhuravleva T.B., Ptashnik I.V., Chencov A.V. Modelirovanie potokov solnechnogo izluchenija v atmosfere s ispol'zovaniem razlichnyh modelej kontinual'nogo pogloshhenija vodjanogo para v tipichnyh uslovijah Zapadnoj Sibiri // Optika atmosf. i okeana. 2013. V. 26, N 2. P. 100–107.
9. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. D16305.
10. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements // Phil. Trans. Roy. Soc. 2012. V. 370, N 1968. С. 2557–2577.
11. Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent atmosfery. L.: Gidrometeoizd, 1986. 264 p.
12. Anderson G., Clough S., Kneizys F., Chetwynd J., Shet-tle E. AFGL Atmospheric Constituent Profiles (0–120 km) // Air Force Geophysics Laboratory, AFGL-TR-86-0110. Environ. Res. Paper. N 954. P. 25.
13. Micel' A.A., Firsov K.M., Fomin B.A. Perenos opticheskogo izluchenija v molekuljarnoj atmosfereat. Tomsk: STT, 2001. 444 p.
14. Goody R., West R., Chen L., Crisp D. The correlated-k method for radiation calculations in nonhomogeneous atmospheres // J. Quant. Spectrosc. Radiat. Transfer. 1989. V. 42, N 6. P. 539–550.
15. Lacis A.A., Oinas V. A description of the K-distribution methods for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres // J. Geophys. Res. D. 1991. V. 96, N 5. P. 9027–9063.
16. Firsov K.M., Chesnokova T.Ju. Vlijanie variacij koncentracii СН4 i N2O na potoki dlinnovolnovoj radiacii v atmosfere Zemli // Optika atmosf. i okeana. 1999. V. 12, N 9. P. 790–795.
17. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Cam-pargue A., Champion J.-P., Chance K., Coudert L.H., Da-na V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Laf-ferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O., Niki-tin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Simecková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J. The HITRAN 2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
18. Doklad «O sostojanii okruzhajushhej sredy Volgogradskoj oblasti v 2009 year» / Red. koll.: V.I. Novikov i dr.; Komitet prirodnyh resursov i ohrany okruzhajushhej sredy Administracii Volgogradskoj oblasti. M.: Globus, 2010. 304 p.
19. Aref'ev V.N. Molekuljarnoe pogloshhenie vodjanym parom izluchenija v okne otnositel'noj prozrachnosti atmosfery 8–13 μm // Optika atmosf. i okeana. 1989. V. 2, N 10. P. 1034–1054.