Vol. 28, issue 01, article # 5

Babchenko S. V., Matvienko G. G., Sukhanov A. Ya. Estimation of sensing possibility of CH4 and CO2 greenhouse gases above underlying surface with a spaceborne IPDA lidar. // Optika Atmosfery i Okeana. 2015. V. 28. No. 01. P. 37-45 [in Russian].
Copy the reference to clipboard
Abstract:

A possible error of measurements in troposphere of CH4 and CO2 in the presence of clouds based on the IPDA methodology, the choice of wavelengths, and a brief description of the implemented software for the simulation of radiation transport for spaceborne lidar sounding is presented. It is shown that multiple scattering can influence the signal power, but differential absorption method eliminates this drawback. Errors in the calculations depending on the underlying surface heights and presence of clouds are given.

Keywords:

atmosphere, lidar, carbon dioxide, methane

References:

  1. Izmenenie klimata, 2007: Obobshhajushhij doklad. Vklad rabochih grupp I, II, i III v chetvertyj doklad ob ocenke Mezhpravitel'stvennoj gruppy jekspertov po izmeneniju klimata [R.K. Pachauri, A. Rajzinger i osnovnaja gruppa avtorov (red.)]. Shvejcarija, Zheneva: MGJeIK, 2008.104 p.
  2. Arshinov M.Ju., Belan B.D., Davydov D.K., Inouje G., Maksjutov Sh., Machida T., Fofonov A.V. Vertikal'noe raspredelenie parnikovyh gazov nad Zapadnoj Sibir'ju po dannym mnogoletnih izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 5. P. 457–464.
  3. National Research Council. 2010. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements. Washington, DC: National Academies Press. ISBN 0-309-15212-7. 124 p.
  4. Gerard S.J., Сiais Ph., Biraud S., Ramonet M. Climate Change – Inverse Modelling: Assessment of Greenhouse Gas Emissions from Ireland (2000-LS-5.3.1-M1). Final Report // ERTDI Report Series. N 35. National University of Ireland, Galway. Environmental Protection Agency. 2006. ISBN 1840951656, 9781840951653. 13 p.
  5. Prinn R., Heimbach P., Rigby M., Dutkiewicz S., Melillo J.M., Reilly J.M., Kicklighter D.W., Waugh C. A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions // MIT Center for Global Change Science. Joint Program Report Series. 2011. N 200. 92 p.
  6. Houweling S., Breon F.-M., Aben I., Rodenbeck C., Gloor M., Heimann M., Сiais Ph. Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of measurement techniques and their performance as a function of space and time // Atmos. Chem. Phys. 2004. V. 4, N 2. P. 523–538.
  7. Abshire J.B., Riris H., Hasselbrack W., Allan G., Weaver C., Mao J. Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument // Proc. 2009 Conf. on Lasers and Electro-Optics. Optical Society of America. Paper CFU-2. 2009a.
  8. Bovensmann H., Burrows J.P., Buchwitz M., Frerick J., Noel S., Rozanov V.V., Chance K.V., Goede A.P.H. SCIAMACHY: Mission objectives and measurement modes // J. Atmos. Sci. 1999. V. 56, N 2. P. 127–150.
  9. Yokota T., Yoshiba Y., Eguchi N., Ota Y., Tanaka T., Watanabe H., Maksyutov S. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results // SOLA. 2009. V. 5. P. 160–163.
  10. Crisp D., Atlas R.M., Breon F.-M., Brown L.R., Burrows J.P., Ciais P. The orbiting Carbon Observatory (OCO) mission // Adv. Space Res. 2004. V. 34, N 4. P. 700–709.
  11. Dufour E., Bréon F.-M. Spaceborne Estimate of Atmospheric CO2 Column by Use of the Differential Absorption Method: Error Analysis // Appl. Opt. 2003. V. 42, N 18. P. 3595–3609.
  12. Ehret G., Kiemle C., Wirth M., Amediek A. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis // Appl. Phys. 2008. V. 90. P. 593–608.
  13. Matvienko G.G., Krekov G.M., Sukhanov A.Ya. Space- borne remote sensing of greenhouse gases by IPDA lidar: A potentialities estimate // 25th Int. Laser Radar Conf. July 05–09, 2010. St.-Peterburg. S11P–02.
  14. Amediek A., Fix A., Ehret G., Caron J., Durand Y. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2 // Atmos. Meas. Technol. 2009. V. 2. P. 1487–1536.
  15. Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
  16. Belan B.D., Krekov G.M. Vlijanie antropogennogo faktora na soderzhanie parnikovyh gazov v troposfere. 1. Metan // Optika atmosf. i okeana. 2012. V. 25, N 4. P. 361–373.
  17. Arshinov M.Ju., Belan B.D., Davydov D.K., Krekov G.M., Fofonov A.V., Babchenko S.V., Inoue G., Machida T., Maksutov Sh., Sasakawa M., Shimoyama K. Dinamika vertikal'nogo raspredelenija parnikovyh gazov v atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1051–1061.
  18. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. The ASTER spectral library version 2.0 // Remote Sens. Environ. 2009. V. 113, N 4. P. 711–715.
  19. Gille J.C., Ziskin D., Francis G., Edwards D.P., Dee-ter M.N. Effects of a Spectral Surface Reflectance on Measurements of Backscattered Solar Radiation: Application to the MOPITT Methane Retrieval // Atmos. Ocean. Technol. 2005. V. 22, N 5. P. 566–574.
  20. Krekov G.M., Krekova M.M. Ob jeffektivnosti lidarnyh metodov differencial'nogo pogloshhenija v uslovijah oblachnoj atmosfery // Optika atmosf. i okeana. 2005. V. 18, N 10. P. 903–913.
  21. Krekov G.M. Metod lokal'noj ocenki potoka v zadachah shirokopolosnogo lazernogo zondirovanija // Optika atmosf. i okeana. 2010. V. 23, N 1. P. 47–55.
  22. Matvienko G.G., Krekova M.M., Shamanaev V.S. Influence of multiple scattering on the formation of space lidar BALKAN-1 cloud signals // Proc. SPIE. 1997. V. 3218. DOI: 10.1117/12.295649.