Vol. 28, issue 05, article # 10

Kochanov V. P. Algebraic approximation of the spectral line profile with accounting for strong and weak velocity-changing collisions. // Optika Atmosfery i Okeana. 2015. V. 28. No. 05. P. 474-479. DOI: 10.15372/AOO20150510 [in Russian].
Copy the reference to clipboard
Abstract:

The algebraic approximation of the spectral line profile derived with simultaneous account of small- and large-angle molecular scattering collisions was obtained. Deviations of the approximate line profile from the calculated exact profile do not exceed a tenth of a percent in the range of practically relevant parameters. It was shown that weak collisions with scattering on classical small angles diminish the collision line narrowing, which causes the profile to be flatter than the profile in the strong velocity-changing collisions model. The relative difference of the maximal amplitudes of these profiles can reach 15% that makes the accounting for weak collisions along with strong collisions to be necessary in a quantitative processing of high resolution inhomogeneously broadened spectra.

Keywords:

line profile, weak collisions, strong collisions, approximation

References:

  1. CiuryƂo R. Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings // Phys. Rev. A. 1998. V. 58, N 2. P. 1029–1039.
  2. Hartmann J.M., Boulet C., Robert D.A., Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications. Amsterdam: Elsevier, 2008. 411 p.
  3. Voigt W. Über das Gesetz Intensitätsverteilung innerhalb der Linien eines Gasspektrums. München; Berlin: Sitzber. Bayr Akad., 1912. 603 p.
  4. Kochanov V.P. On systematic errors in spectral line parameters retrieved with the Voigt line profile // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 12. P. 1635–1641.
  5. Nelkin M., Ghatak A. Simple binary collision model for Van Hove’s Gs(rt) // Phys. Rev. A. 1964. V. 135, N 1. P. A4–A9.
  6. Rautian C.G., Sobel'man I.I. Vlijanie stolknovenij na doplerovskoe ushirenie spektral'nyh linij // Uspehi fiz. nauk. 1966. V. 90, N 2. P. 209–236.
  7. Dicke R.H. The effect of collisions upon the Doppler width of spectral lines // Phys. Rev. 1953. V. 89. P. 472–473.
  8. Pine A.S. Asymmetries and correlations in speed-dependent Dicke-narrowed line shapes of argon-broadened HF // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 62, iss. 4. P. 397–423.
  9. Kochanov V.P. Projavlenija rassejanija molekul na malye ugly v konture spektral'nyh linij // Zh. jeksperim. i teor. fiz. 2014. V. 145, N 3. P. 387–404.
  10. Kochanov V.P. Combined effect of small- and large-angle scattering collisions on a spectral line shape // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 159. P. 32–38.
  11. Rautian S.G., Smirnov G.I., Shalagin A.M. Nelinejnye rezonansy v spektrah atomov i molekul. Novosibirsk: Nauka, 1979. 310 p.
  12. Kochanov V.P. Vlijanie difrakcii molekul na stolknovitel'noe suzhenie linij // Optika i spektroskopija. 2000. V. 89, N 5. P. 743–748.
  13. Kochanov V.P. Line profiles for the description of line mixing, narrowing, and dependence of relaxation constants on speed // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 12. P. 1931–1941.
  14. Berman P.R. Speed-dependent collisional width and shift parameters in spectral line profiles // J. Quant. Spectrosc. Radiat. Transfer. 1972. V. 12, N 9. P. 1331–1342.
  15. Spravochnik po special'nym funkcijam / Pod red. M. Abramovica, I. Stigan. M.: Nauka, 1979. 830 p.
  16. Kochanov V.P., Rautian S.G., Shalagin A.M. Ushirenie nelinejnyh rezonansov vsledstvie stolknovenij s izmeneniem skorosti // Zh. jeksperim. i teor. fiz. 1977. V. 72, N 4. P. 1358–1374.
  17. Kochanov V.P., Lopasov V.P. Issledovanie kontura linii pogloshhenija molekuljarnyh gazov metodami lazernoj spektroskopii // Spektral'nye projavlenija mezhmolekuljarnyh vzaimodejstvij / Pod red. Ju.S. Makushkina. Novosibirsk: Nauka, 1982. P. 142–172.
  18. Kochanov V.P. Jekonomichnye approksimacii konturov Fojgta i Rautiana–Sobel'mana // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 275−278.