Vol. 28, issue 06, article # 6

Kraineva M. V., Malakhova V. V., Golubeva E. N. Numerical simulation of forming temperature anomalies in the Laptev Sea due to the heat flow of the Lena River. // Optika Atmosfery i Okeana. 2015. V. 28. No. 06. P. 534–539. DOI: 10.15372/AOO20150606 [in Russian].
Copy the reference to clipboard
Abstract:

Based on the numerical modeling, the existence of the temperature anomalies in the Laptev Sea shelf areas due to the heat flow of the Lena River is investigated. In order to determine the heat flow at the outlet to the sea, the linear regression formulas connecting the river water temperature with the air temperature are used. It is shown that the temperature anomalies caused by the river run-off can reach 2°C not only at the surface water but also at the bottom water in the Laptev Sea shelf areas, however these anomalies exist only during the summer season. With the use of the numerical modeling it has been obtained that the increase in the bottom water temperature by 2°C in August and September results in growth of the permafrost degradation rate near the Lena Delta.

Keywords:

Laptev Sea, water circulation, heat flow of the Lena River, East Siberian Shelf

References:

  1. Kulakov M.Ju. Cirkuljacija vod i perenos vzvesej v morjah Laptevyh i Vostochno-Sibirskom // Problemy Arktiki i Antarktiki. 2008. N 3 (80). P. 86–97.
  2. Grigor'ev M.N., Razumov S.O., Kunickij V.V., Spektor V.B. Dinamika beregov vostochnyh Arkticheskih morej Rossii: osnovnye faktory, zakonomernosti i tendencii // Kriosfera Zemli. 2006. V. X, N 4. P. 74–94.
  3. Magrickij D. Teplovoj stok rek v morja Rossijskoj Arktiki i ego izmenenija // Vestn. MGU. Ser. 5. 2009. N 5. P. 69–77.
  4. Fartyshev A.I. Osobennosti pribrezhno-shel'fovoj kriolitozony morja Laptevyh / Otv. red. N.N. Romanovskij. Novosibirsk: Nauka, 1993. 136 p.
  5. Semiletov I.P. Cikl ugleroda v sisteme «atmosfera-susha-shel'f» Vostochnoj Arktiki. URL: // http:// www.poi.dvo.ru/sites/default/files/nir/2012/lab52.pdf
  6. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas // Geo Mar. Lett. 2005. V. 25, iss. 2–3. P. 167–182. DOI: 10.1007/s00367-004-0198-6.
  7. Malakhova V.V., Golubeva E.N. Modeling of the dynamics subsea permafrost in the East Siberian Arctic Shelf under the past and the future climate changes // Proc. SPIE. 2014. V. 9292. 20th Int. Sympos. on Atmospheric and Ocean Optics. Atmospheric Physics, 92924D. DOI: 10.1117/12.2075137.
  8. Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability // J. Geophys. Res. 2011. V. 116. C10027. DOI: 10.1029/ 2011JC007218.
  9. Anisimov O.A., Borzenkova I.I., Lavrov S.A., Strel'chenko Ju.G. Sovremennaja dinamika podvodnoj merzloty i jemissija metana na shel'fe morej Vostochnoj Arktiki // Led i sneg. 2012. N 2 (118). P. 97–105.
  10. Shakhova N., Semiletov I., Leifer I., Rekant P., Salyuk A., Kosmach D. Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf // J. Geophys. Res. 2010. V. 115. C08007. DOI: 10.1029/2009JC005602.
  11. Malahova V.V., Golubeva E.N. O vozmozhnoj jemissii metana na shel'fe morej Vostochnoj Arktiki // Optika atmosf. i okeana. 2013. V. 26, N 6. P. 452–458.
  12. A Regional, Electronic, Hydrographic Data Network for the Arctic Region. URL: http://www.russia-arcticnet.sr.unh.edu/index.html
  13. Morin G., Couillard D. Predicting River Temperatures with a Hydrological Model // Encyclopedia of Fluid Mechanics. V. 10. Hudson, Texas: Gulf Publishing Company, 1990. P. 171–209.
  14. Sinokrot B.A., Gulliver J.S. In-Stream Flow Impact on River Water Temperatures // J. Hydraulic Res. 2000. V. 38, iss. 5. P. 339–349.
  15. St-Hilarie A., Morin G., El-Jabi N., Caissie D. Water Temperature Modelling in a Small Forested Stream: Implication of Forest Canopy and Soil Temperature // Can. J. Civ. Eng. 2000. V. 27, N 6. P. 27–45.
  16. Benyahya L., Caissie D., St-Hilarie A., Ouarda T.B.M.J., Bobee B. A Review of Statistical Water Temperature Models // Can. Water Res. Assoc. 2007. V. 32, N 3. P. 179–192.
  17. Liu B., Yang D., Ye B., Berezovskaya S. Long-term open-water season stream temperature variations and changes over Lena River Basin in Siberia // Glob. Planet. Change. 2005. V. 48, iss. 1–3. P. 96–111. DOI: 10.1016/j.gloplacha.2004.12.007.
  18. Kraineva M.V., Malakhova V.V., Golubeva E.N. Numerical simulation of forming temperature anomalies in the Laptev Sea // Bulletin of the NCC. Series: Numerical Modeling in Atmosphere, Ocean, and Environment Studies. 2014. Iss. 14. P. 27–34.
  19. Golubeva E.N., Platov G.A. On improving the simulation of Atlantic Water circulation in the Arctic Ocean // J. Geophys. Res. 2007. V. 112, C04S05. DOI: 10.1029/2006JC003734.
  20. Golubeva E.N., Platov G.A. Numerical Modeling of the Arctic Ocean Ice System Response to Variations in the Atmospheric Circulation from 1948 to 2007 // Izvestiya, Atmos. Ocean. Phys. 2009. V. 45, N 1. P. 137–151.
  21. Hunke E.C., Dukowicz J.K. An elastic-viscous-plastic model for ice dynamics // J. Phys. Oceanograph. 1997. V. 27, N 9. P. 1849–1867.
  22. Volosmarty C.J., Fekete В., Tucker B.A. River Discharge Database. Version 1.1 (RivDIS vl.O supplement). University of New Hampshire, Durham NH (USA), 1998.
  23. Steele M., Morley R., Ermold W. PHC: A global hydrography with a high quality Arctic Ocean // J. Climate. 2000. V. 14, N 9. P. 2079–2087.
  24. The NCEP/NCAR Reanalysis Project at the NOAA/ ESRL Physical Sciences Division. URL: http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml
  25. Antipina Z.N., Arje F.Je., Molochushkin I.N. Raschet degradacii mnogoletnemerzlyh tolshh pod dnom morja // Geoteplofizicheskie issledovanija v Sibiri. Novosibirsk: Nauka, 1978. P. 66–73.
  26. Malakhova V.V. Mathematical modeling of the submarine permafrost long-term dynamics and gas hydrate stability zone in the Siberian Arctic shelf // Bulletin of the NCC. Series: Numerical Modeling in Atmosphere, Ocean, and Environment Studies. 2014. Iss. 14. P. 41–54.
  27. Arzhanov M.M., Eliseev A.V., Mokhov I.I. A global climate model based, Bayesian climate projection for northern extra-tropical land areas // Glob. Planet. Change. 2012. V. 86–87. P. 57–65.