Vol. 28, issue 07, article # 9

Tarasenko V. F., Beloplotov D. V., Baksht E. H., Burachenko A. G., Lomaev M. I. Equivalent of bead lightning in pulse discharge generated by runaway electrons in atmospheric pressure air. // Optika Atmosfery i Okeana. 2015. V. 28. No. 07. P. 661-668. DOI: 10.15372/AOO20150709 [in Russian].
Copy the reference to clipboard
Abstract:

The breakdown initiated by runaway electrons in non-uniform electric field in atmospheric pressure air was investigated. Bright plasma channels (like filaments) in the center of the discharge gap was observed on the background of the diffuse discharge at applying high-voltage pulses with an amplitude of about 200 kV across the discharge gap with interelectrode distance of 18 mm. Occurrence probability of the ones was no more than 10%. Glow of the bright plasma channels are similar to the one of a spark. It was found that the bright plasma channels appear on the decline stage of the discharge current. Radiation intensity of the one is an order of magnitude less than that of the diffuse discharge. Furthermore, the bright plasma channels was observed in pulse-periodic discharge. In this case, nanosecond voltage pulses with an amplitude of 10–15 kV was applied across the discharge gap with interelectrode distance of 6 mm. Pulse repetition rate was 400 Hz. Occurrence of the bright plasma channels on the background of diffuse discharge is due to generation of runaway electrons and the discharge current redistribution in cross-section of the discharge plasma on the decline stage of the discharge current. It is assumed that the registered form of the discharge is analog of bead lightning observed in the Earth's atmosphere

Keywords:

breakdown of atmospheric pressure air in non-uniform electric field, experimental simulation of bead lightning, runaway electrons

References:

  1. Barri Dzh. Sharovaja molnija i chetochnaja molnija. M.: Mir, 1983. 288 p.
  2. Stahanov I.P. O fizicheskoj prirode sharovoj molnii. M.: Nauchnyj mir, 1996. 264 p.
  3. Bazeljan Je.M., Rajzer Ju.P. Fizika molnii i molniezashhity. M.: Fizmatlit, 2001. 320 p.
  4. Rakov V.A., Uman M.A. Lightning: Physics and Effects. Cambridge, UK: Cambridge University Press, 2003. V. 1. 698 p.
  5. Alanakjan Ju.R. Priroda chetochnoj molnii. O strukture kanala linejnoj molnii // Dokl. RAN. 2009. V. 425, N 3. P. 328–330.
  6. Bitjurin V.A., Velikodnyj V.Ju., Samuolis I.A. Issledovanie svojstv jerozionnogo razrjada v gazodispersnom potoke // Pis'ma v ZhTF. 2009. V. 35, issue 21. P. 61–68.
  7. Vysikajlo F.I., Ershov A.P., Kuz'min M.I., Tivkov A.S., Chekalin B.V. Osobennosti perenosa toka v razrjade v poperechnom sverhzvukovom potoke gaza pri formirovanii cilindricheskih, kumuljativnyh struktur (plazmoidov) // Fiziko-himicheskaja kinetika v gazovoj dinamike. 2007. N 5. P. 1–31.
  8. Ludwig G.O., Saba M.M.F. Bead lightning formation // Phys. Plasm. 2005. V. 12. 093509 (15 p.).
  9. Bojchenko A.M. K voprosu o prirode chetochnyh molnij // Fiz. plazmy. 1996. V. 22, N 11. P. 1012–1016.
  10. Tarasenko V.F., Baksht E.Kh., Burachenko A.G., Kostyrya I.D., Lomaev M.I., Rybka D.V. Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure // Plasma Devices Oper. 2008. V. 16, N 4. P. 267–298.
  11. Tarasenko V.F., Kostyrja I.D., Rybka D.V. Proboj v vozduhe atmosfernogo davlenija pri nanosekundnoj dlitel'nosti impul'sa naprjazhenija za schet ubegajushhih jelektronov // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 103–108.
  12. Runaway Electrons Preionized Diffuse Discharges / Ed. by V.F. Tarasenko. New York: Nova Science Publishers, Inc., 2014. 598 p.
  13. Lomaev M.I., Rybka D.V., Sorokin D.A., Tarasenko V.F., Krivonogova K.Ju. Izluchatel'nye harakteristiki azota pri vozbuzhdenii ob#emnym razrjadom, iniciiruemym puchkom ubegajushhih jelektrodov // Optika i spektroskopija. 2009. V. 107, N 1. P. 40–47.
  14. Shao T., Tarasenko V.F., Zhang C., Lomaev M.I., Sorokin D.A., Jan P., Kozyrev A.V., Baksht E.Kh. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation // Appl. Phys. 2012. V. 111. 023304 (10 p).
  15. Tarasenko V.F., Baksht E.H., Lomaev M.I., Rybka D.V., Sorokin D.A. Perehod ot diffuznogo k iskrovomu razrjadu pri nanosekundnom proboe azota i vozduha povyshennogo davlenija v neodnorodnom jelektricheskom pole // Zh. tehn. fiz. 2013. V. 83, issue 8. P. 29–35.
  16. Baksht E.H., Tarasenko V.F., Shut'ko Ju.V., Erofeev M.V. Tochechnyj istochnik UF-izluchenija s maloj dlitel'nost'ju impul'sa // Kvant. jelektron. 2012. V. 42, N 2. P. 153–156.
  17. Tarasenko V.F., Beloplotov D.V., Lomaev M.I. O prirode izluchenija golubyh i zelenyh struj v laboratornyh razrjadah, iniciiruemyh puchkom ubegajushhih jelektronov // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 349–353.
  18. Gurevich A.V., Zybin K.P. Proboj na ubegajushhih jelektronah i jelektricheskie razrjady vo vremja grozy // Uspehi fiz. nauk. 2001. V. 171, N 11. P. 1177–1199.
  19. Dwyer J.R., Rassoul H.K., Al-Dayeh M., Caraway L., Chrest A., Wright B., Kozak E., Jerauld J., Uman M.A., Rakov V.A., Jordan D.M., Rambo K.J. X-ray bursts associated with leader steps in cloud-to-ground lightning // Geophys. Res. Lett. 2005. V. 32. L01803 (4 p).
  20. Hazelton B.J., Grefenstette B.W., Smith D.M., Dwyer J.R., Shao X.M., Cummer S.A., Chronis T., Lay E.H., Holzworth R.H. Spectral dependence of terrestrial g-ray flashes on source distance // Geophys. Res. Lett. 2009. V. 36. L01108 (5 p).
  21. Rybka D.V., Andronikov I.V., Evtushenko G.S., Kozyrev A.V., Kozhevnikov V.Ju., Kostyrja I.D., Tarasenko V.F., Trigub M.V., Shut'ko Ju.V. Koronnyj razrjad v vozduhe atmosfernogo davlenija pri modulirovannom impul'se naprjazhenija dlitel'nost'ju 10 ms // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 85–90.
  22. Tarasenko V.F., Kostyrja I.D. Generacija ubegajushhih jelektronov i rentgenovskogo izluchenija pri proboe vozduha atmosfernogo davlenija impul'sami naprjazhenija s frontom ~0,5 mks // Fiz. plazmy. 2015. V. 41, N 3. P. 294–299.