Vol. 28, issue 08, article # 11

Smalikho I. N., Banakh V. A., Holzäpfel F., Rahm S. Estimation of aircraft wake vortex parameters from array of radial velocities measured by a coherent Doppler lidar. // Optika Atmosfery i Okeana. 2015. V. 28. No. 08. P. 742-750. DOI: 10.15372/AOO20150811 [in Russian].
Copy the reference to clipboard
Abstract:

A modified method of the radial velocities (RV) is offered. On the base of results of the numerical simulation that imitates operation of “Stream Line” and 2-mm pulsed coherent Doppler lidars (PCDL) we analyze accuracy of the estimation of aircraft wake vortex parameters using the RV method. Results are presented of field experiments carried out with the aim to obtain estimates for vortex axis trajectories and dependence of the vortex circulation on time from arrays of the radial velocity measured by these lidars. For the case of 2-mm PCDL we compared results given by methods of velocity envelopes and RV. The limits of applicability of the RV method have been determined.

Keywords:

coherent Doppler lidar, aircraft wake vortices

References:

  1. Babkin V.I., Belocerkovskij A.S., Turchak L.I., Baranov N.A., Zamjatin A.I., Kanevskij M.I., Morozov V.V., Pasekunov I.V., Chizhov N.Ju. Sistemy obespechenija bezopasnosti poletov letatel'nyh apparatov. M.: Nauka, 2008. 373 p.
  2. Henderson S.W., Suni P.J.M., Hale C.P., Hannon S.M., Magee J.R., Bruns D.L., Yuen E.H. Coherent laser radar at 2 mm using solid-state lasers // IEEE Trans. Geosci. Remote Sens. 1993. V. 31, N 1. P. 4–15.
  3. Hannon S.M., Thomson J.A. Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar // J. Modern Optics. 1994. V. 41, N 11. P. 2175–2196.
  4. Köpp F., Rahm S., Smalikho I.N. Characterization of aircraft wake vortices by 2-mm pulsed Doppler lidar // J. Atmos. Ocean. Technol. 2004. V. 21, N 2. P. 194–206.
  5. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izdatelstvo IOA SO RAN, 2013. 304 p.
  6. Rahm S., Smalikho I.N. Aircraft wake vortex measurement with airborne coherent Doppler lidar // J. Aircraft. 2008. V. 45, N 4. P. 1148–1155.
  7. Smalikho I.N., Köpp F., Rahm S. Measurement of atmospheric turbulence by 2-mm Doppler lidar // J. Atmos. Ocean. Technol. 2005. V. 22, N 11. P. 1733–1747.
  8. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  9. Banah V.A., Smaliho I.N., Falic A.V., Belan B.D., Arshinov M.Ju., Antohin P.N. Sovmestnye radiozondovye i doplerovskie lidarnye izmerenija vetra v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 911–916.
  10. Smaliho I.N., Banah V.A. Opredelenie parametrov vihrevogo sleda samoleta iz dannyh, izmerjaemyh lidarom «Stream Line» // Mat-ly XXI Mezhdunar. simp. «Optika atmosfery i okeana. Fizika atmosfery» [Jelektronnyj resurs]. Tomsk: Izdatelstvo IOA SO RAN, 2015. P. С262–С265. 1 CD-ROM.
  11. Banah V.A., Brjuer A., Pichugina E.L., Smaliho I.N. Izmerenija skorosti i napravlenija vetra kogerentnym doplerovskim lidarom v uslovijah slabogo jehosignala // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 333–340.
  12. Gerz T., Holzäpfel F., Darracq D. Commercial aircraft wake vortices // Progr. Aerospace Sci. 2002. V. 38, N 3. P. 181–208.
  13. Schwarz C.W., Hahn K.U., Fischenberg D. Wake encounter severity assessment based on validated aerodynamic interaction models // AIAA Guidance, Navigation, and Control Conf., 2–5 August 2010, Toronto, Ontario Canada. AIAA 2010-7679. URL: http://www. wakenet.eu/fileadmin/user_upload/News%26Publications/ AIAA-237438-765.pdf
  14. Burnham D.C., Hallock J.N. Chicago monostatic acoustic vortex sensing system // U.S. Department of Transportation. DOT-TSC-FAA-79-103. 1982. 206 p.
  15. Köpp F., Rahm S., Smalikho I.N., Dolfi A., Cariou J.-P., Harris M., Young R.I. Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars // J. Aircraft. 2005. V. 42, N 4. P. 916–923.