Vol. 28, issue 09, article # 2

Ptashnik I. V., Klimeshina T. E., Petrova T. M., Solodov A. A., Solodov A. M. Water vapour continuum absorption at decreased temperatures within 2.7 and 6.25 μm bands. // Optika Atmosfery i Okeana. 2015. V. 28. No. 09. P. 772-776. DOI: 10.15372/AOO20150902 [in Russian].
Copy the reference to clipboard
Abstract:

High-resolution Fourier transform spectroscopy laboratory measurements of pure water vapour absorption are performed at temperatures from –9 to 15°С in the near-IR spectral region. As the result the water vapour continuum absorption is retrieved within 1600 (6.25 μm) and 3600 cm–1 (2.7 μm) absorption bands. Spectral features of the continuum retrieved at 15°С are in good agreement with known data. It is shown that different spectral peaks of the continuum have different temperature dependencies.

Keywords:

continuum absorption, water vapour, near-IR absorption bands

References:

  1. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. Р. 535–555.
  2. Ptashnik I.V. Kontinual'noe pogloshhenie vodjanogo para: kratkaja predystorija i sovremennoe sostojanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
  3. Rädel G., Shine K.P., Ptashnik I.V. Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths // Quart. J. Roy. Meteorol. Soc. 2015. V. 141, N 688. P. 727–738.
  4. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm1: Evidence for water dimers // Quart. J. Roy. Meteorol. Soc. 2004. V. 130. P. 2391–2408.
  5. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vapor continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions // Geophys. Res. Lett. 2007. V. 34. P. L12808(1–5).
  6. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 831–852.
  7. Vigasin A.A., Pavlyuchko A.I., Jin Y., Ikawa S. Density evolution of absorption bandshapes in the water vapour OH-stretching fundamental and overtone: Evidence for molecular aggregation // J. Mol. Struc. 2005. V. 742, N 1–3. P. 173–181.
  8. Odintsova T.A., Tretyakov M.Yu. Evidence of true bound and metastable dimers and trimers presence in high temperature water vapor spectra // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 134–137.
  9. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers. 1. Review and analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
  10. Vigasin A.A. Bound, metastable and free states of bimolecular complexes // Infrared Phys. 1991. V. 32. P. 461–470.
  11. Vigasin A.A. Bimolecular absorption in atmospheric gases // Weakly interacting molecular pairs: Unconventional absorbers of radiation in the atmosphere / Ed. by C. Camy-Peyret, A.A. Vigasin. Boston; Dordrecht; London: Kluwer, 2003. P. 23–47.
  12. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A., Sulakshin S.A. A Fourier-spectrometer with a 30-m base-length multipass cell for the study of weak absorption spectra of atmospheric gases // Atmos. Oceanic. Opt. 2011. V. 24, N 6. P. 593–595.
  13. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200 cm – 8000 cm–1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301(1–23).
  14. Shillings A.J., Ball S.M., Barber M.J., Tennyson J., Jones R.L. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list // Atmos. Chem. Phys. 2011. V. 10. P. 23345–23380.
  15. Rothman L.S., Gordon I.E., Babikov I.E., Barbe A., Benner C.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert E.A., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 130. P. 4–50.
  16. Mlawer E.J., Payne V.H., Moncet J-L., Delamere J.S., Alvarado M.J., Tobin D.D. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. Roy. Soc. A. 2012. V. 370. Р. 2520–2556.
  17. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.