Vol. 28, issue 09, article # 3

Borkov Yu. G., Klimachev Yu. M., Sulakshina O. N. The dependence of Zeeman splitting of spectral lines of NO molecule on the magnetic field magnitude. // Optika Atmosfery i Okeana. 2015. V. 28. No. 09. P. 777-791. DOI: 10.15372/AOO20150903 [in Russian].
Copy the reference to clipboard
Abstract:

This paper presents an overview of the experimental and theoretical results, which were obtained from the study the dependence of Zeeman splitting in the vibrational-rotational lines of 0–1 band of the absorption spectrum of nitric oxide molecule on the magnetic field. The experiments were performed in the laboratory of gas lasers at P.N. Lebedev Physical Institute of the Russian Academy of Science. To record the spectrum the method of laser magnetic resonance (LMR) with using continuous wave frequency-tunable CO laser has been applied. Theoretical analysis of LMR spectrograms was carried out in the laboratory of theoretical spectroscopy at V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Science, numerical model was developed. This model is based on the construction of the total effective Hamiltonian of the molecule including the interaction with an external magnetic field. The application of this model allowed us to simulate LMR spectra for given conditions and to describe the nonlinear dependence of the splitting of ro-vibrational energy levels on the magnetic field. The comparison of calculated and experimental LMR spectrograms demonstrated that the numerical model adequately reproduces the location of absorption peaks measured in a damped oscillating magnetic field.

Keywords:

Zeeman splitting, vibrational-rotational spectroscopy, nitric oxide, laser magnetic resonance, CO laser

References:


    1.Belan B.D. Troposfernyj ozon. 5. Gazy – predshestvenniki ozona // Optika atmosf. i okeana. 2009. V. 22, N 3. P. 230–268.
   2. Moncada S., Palmer R.M., Higgs E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology // Pharmacol. Rev. 1991. V. 43, N 2. P. 109–142.
   3. Kaldor A., Olson W.B., Maki A. Pollution monitor for nitric oxide: A laser device based on the Zeeman modulation of absorption // Sci. 1971. V. 176. P. 508–510.
   4. Bonczyk P.A., Ultee C.J. Nitric oxide detection by use of Zeeman-effect and CO laser // Opt. Commun. 1972. V. 6, N 2. P. 196–198.
   5. Mürtz P., Menzel L., Bloch W., Hess A., Michel O., Urban W. LMR spectroscopy: A new sensitive method for on-line recording of nitric oxide in breath // J. Appl. Physiol. 1999. V. 86, N 3. P. 1075–1080.
    6.    Gavrilenko V.P. Spektroskopicheskie metody izmerenija magnitnyh polej v plazme // Jenciklopedija nizkotemperaturnoj plazmy. M.: Nauka, 2000. P. 556–558.
   7. Van Vleck J.H. On s-type doubling and electron spin in the spectra of diatomic molecules // Phys. Rev. 1929. V. 33, N 1. P. 467–506.
   8. Van Vleck J.H. The coupling of angular momentum vectors in molecules // Rev. Mod. Phys. 1951. V. 23, N 3. P. 213–227.
   9. Freed K.F. Theory of the hyperfine structure of molecules: Application to 3P states of diatomic molecules intermediate between Hund’s cases (a) and (b) // J. Chem. Phys. 1966. V. 45, N 11. P. 4214–4241.
10. Meerts W.L., Dymanus A. The hyper fine L-doubling spectra of 14N16O and 15N16O // J. Mol. Spectrosc. 1972. V. 44, N 2. P. 320–346.
11. Veseth L. Hund's coupling case (c) in diatomic molecules. I. Theory // J. Phys. B. 1973. V. 6, N 8. P. 1473–1483.
12. Zare R.N., Schmeltekopf A.L., Harrop W.J., Albritton D.L. A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials // J. Mol. Spectrosc. 1973. V. 46, N 1. P. 37–66.
13. Femenias J.L. Etude des molécules diatomiques. Partie I. Hamiltonians // Can. J. Phys. 1977. V. 55, N 20. P. 1733–1774.
14. Brown J.M., Colbourn E.A., Watson J.K.G., Wayne F.D. An effective Hamiltonian for diatomic molecules. Ab initio calculations of parameters of HCl+ // J. Mol. Spectrosc. 1979. V. 74, N 2. P. 294–318.
15. Hougen J.T. The calculation of rotational energy levels and rotational line intensities in diatomic molecules. Washington, D.C.: U.S. Government printing office, 1970. P. 49.
16. Brown J., Carrington A. Rotational spectroscopy of diatomic molecules. Cambridge: Cambridge University Press, 2003. P. 1013.
17. Beringer R., Castle J.G. Magnetic resonance absorption in nitric oxide // Phys. Rev. 1950. V. 78, N 5. P. 581–586.
18. Mizushima M., Cox J.T., Gordy W. Zeeman effect in the rotational spectrum of NO // Phys. Rev. 1955. V. 98, N 4. P. 1034–1039.
19. Beringer R., Rawson E.B., Henry A.F. Microwave resonance in nitric oxide: Lambda doubling and hyperfine structure // Phys. Rev. 1954. V. 94, N 2. P. 343–349.
20. Mizushima M., Evenson K.M., Wells J.S. Laser magnetic resonance of the NO molecule using 78-, 79-, and 119-mm H2O laser lines // Phys. Rev. A. 1972. V. 5, N 5. P. 2276–2287.
21. Nill K.W., Blum F.A., Calawa A.R., Harman T.C. Observation of L-doubling and Zeeman splitting in the fundamental infrared absorption band of nitric oxide // Chem. Phys. Lett. 1972. V. 14, N 2. P. 234–238.
22. Zeiger H.J., Blum F.A., Nill K.W. Observation of strong nonlinearities in the high field Zeeman spectrum of NO at 1876 cm–1 // J. Chem. Phys. 1973. V. 59, N 8. P. 3968–3970.
23. Meerts W.L., Veseth L. The Zeeman spectrum of the NO molecule // J. Mol. Spectrosc. 1980. V. 82, N 1. P. 202–213.
24. Evenson K.M. Far-infrared laser magnetic resonance // Faraday Discuss. Chem. Soc. 1981. V. 71, N 1. P. 7–14.
25. McKellar A.R.W. Mid-infrared laser magnetic resonance spectroscopy // Faraday Discuss. Chem. Soc. 1981. V. 71, N 1. P. 63–76.
26.    Ivenson K.M., Sejkjelli R.D., Dzhennigs D.A., Kerl R.F. ml., Braun Dzh.M. Lazernyj magnitnyj rezonans v dal'nej infrakrasnoj oblasti // Primenenie lazerov v spektroskopii i fotohimii. M.: Mir, 1983. P. 99–139.
27.    Krasnoperov L. Primenenie lazernogo magnitnogo rezonansa dlja issledovanija processov s uchastiem svobodnyh radikalov v gazovoj faze // Himija plazmy. 1987. V. 14. P. 151–194.
28. Brown J.M. Infrared laser spectroscopy / Ed. by M. Inguscio, W. Demtroder // Appl. Laser Spectrosc. Plenum Press. 1995. P. 189–214.
29. Hakuta K., Uehara H. Laser magnetic resonance for the v = 1 ← 0 transition of NO (2P3/2) by CO laser // J. Mol. Spectrosc. 1975. V. 58, N 2. P. 316–322.
30. Dale R.M., Johns J.W.C., McKellar A.R.W., Riggin M. High-resolution laser magnetic resonance and infrared-radiofrequency double-resonance spectroscopy of NO and its isotopes near 5.4 mm // J. Mol. Spectrosc. 1977. V. 67, N 1–3. P. 440–458.
31. Lin C.C., Mizushima M. Theory of the hyperfine structure of the NO molecule. II. Errata and some additionnal discussion // Phys. Rev. 1955. V. 100, N 6. P. 1726–1730.
32. Liu Y., Guo Y., Liu H., Lin J., Liu X., Huang G., Li F., Li J. On the nonlinearity of the Zeeman effect of NO in the moderate field by intracavity laser magnetic resonance at 1842 cm–1 // Phys. Lett. A. 2000. V. 272, N 1. P. 80–85.
33. Andrusenko R.P., Ionin A.A., Klimachev Yu.M., Kotkov A.A., Kozlov A.Yu. Nonlinear Zeeman splitting of nitric oxide spectral lines in magnetic field // Proc. SPIE. 2007. V. 6729. P. 672923.
34. Takazawa K., Abe H. Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T // J. Chem. Phys. 1999. V. 110, N 19. P. 9492–9499.
35. Takazawa K., Abe H., Wada H. Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25 T // Chem. Phys. Lett. 2000. V. 329, N 5. P. 405–411.
36.    Ionin A.A., Klimachev Ju.M., Kozlov A.Ju., Kotkov A.A. Nelinejnye zeemanovskoe rasshheplenie kolebatel'no-vrashhatel'nyh linij spektra pogloshhenija molekul NO v sil'nom magnitnom pole. Prepr. / FIAN (Moskva). 2009. N 18. P. 1–39.
37.    Dorohov A.O., Klimachev Ju.M., Ionin A.A., Kotkov A.A., Kozlov A.Ju. Zeemanovskij jeffekt v IK-diapazone na perehodah molekuly NO // Nauchnaja sessija MIFI. Sb. nauchnyh trudov. 2009. V. IV. P. 171–174.
38. Ionin A.A., Klimachev Yu.M., Kozlov A.Yu., Kotkov A.A. Mid-IR Zeeman spectrum of nitric oxide molecules in a strong magnetic field // J. Phys. B. 2011. V. 44. P. 025403.
39.    Borkov Ju.G., Ionin A.A., Kinjaevskij I.O., Klimachev Ju.M., Kozlov A.Ju., Kotkov A.A., Sulakshina O.N. Issledovanie projavlenija jeffekta Zeemana v IK-spektre molekuly NO // Trudy XX Mezhdunar. simp. «Optika atmosfery i okeana. Fizika atmosfery» [Jelektronnyj resurs]. Tomsk: Izd-vo IOA SO RAN, 2014. 1 CD-ROM. C. A23–A26.
40. Borkov Yu.G., Ionin A.A., Klimachev Yu.M., Kinyaevskiy I.O., Kotkov A.A., Kozlov A.Yu., Sulakshina O.N. Nonlinear Zeeman splitting of nitric oxide rotational-vibrational spectral lines in strong magnetic field // Proc. 41st EPS Conf. Plasma Physics. Berlin, Germany. ECA. June 2014. V. 38F. P. 1.121 (4 p.). URL: http:// ocs.ciemat.es/EPS2014PAP/pdf/P1.121.pdf
41. Borkov Yu.G., Ionin A.A., Klimachev Yu.M., Kinyaevskiy I.O., Kotkov A.A., Kozlov A.Yu., Sulakshina O.N. Zeeman effect treatment in the infrared spectrum of the nitric oxide molecule // Proc. SPIE. 2014. V. 9292. P. 929207 (5 р.).
Vetoshkin S., Ionin A., Klimachev Yu., Kotkov A., Kozlov A., Rulev O., Seleznev L., Sinitsyn D. Multiline laser probing for active media CO : He, CO : N2, and CO : O2 in wide-aperture pulsed amplifier // J. Russian Laser Res. 2006. V. 27, N 1. P. 33–69.
42. Radford H.E. Microwave Zeeman effect of free hydroxyl radicals // Phys. Rev. 1961. V. 122, N 1. P. 114–130.
43. Schadee A. On the Zeeman effect in electronic transitions of diatomic molecules // J. Quant. Spectrosc. Radiat. Transfer. 1978. V. 19, N 5. P. 517–531.
44. Ramos A.A., Bueno J.T. Theory and modeling of the Zeeman and Paschen–Back effects in molecular lines // Astrophys. J. 2006. V. 636, N 1. P. 548–563.
45.    Sulakshina O.N. Opisanie kolebatel'no-vrashhatel'nyh spektrov dvuhatomnyh stabil'nyh radikalov v sostojanii 2P // Optika atmosf. i okeana. 2004. V. 17, N 11. P. 878–886.
46. Amiot C., Maillard J.P., Chauville J. Fourier spectroscopy of the OD infrared spectrum. Merge of electronic, vibration-rotation, and microwave spectroscopic data // J. Mol. Spectrosc. 1981. V. 87, N 1. P. 196–218.
47. Schall H., Gray J.A., Dulick M., Field R.W. Sub-Doppler Zeeman spectroscopy of the CeO molecule // J. Chem. Phys. 1986. V. 85, N 2. P. 751–762.
48. Herrmann W., Rohrbeck W., Urban W. Line shape analysis for Zeeman modulation spectroscopy // Appl. Phys. 1980. V. 22, N 1. P. 71–75.
49. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner C. D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Muller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev V., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 130, N 1. P. 4–50.