The results of an interpretation of a single-parameter spectral model of the extinction coefficient of coastal marine haze are presented. The method employed to solve the corresponding inverse problem is examined. The general behavior of the microstructural parameters of coastal haze as a function of the degree of atmospheric turbidity is determined. It is shown that the haze consists of submicron and coarsely dispersed fractions, and the contribution of these fractions to the extinction of visible and IR radiation is estimated.
1. M.V. Kabanov, M.V. Panchenko, Yu.A. Pkhalagov, et al., Optical Properties of Coastal Atmospheric Hazes (Nauka, Novosibirsk, 1988).
2. V.V. Veretennikov, M.V. Kabanov, and M.V. Panchenko, Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos, i Okeana 22, No. 10, 1042–1049 (1988).
3. G.I. Gorchakov, A.S. Emilenko, and M.A. Sviridenko, Izv. Akad. Nauk SSSR, Fiz. Atmos, i Okeana 17, No. 1, 39–49 (1981).
4. M.V. Panchenko and V.Ya. Fadeev, in: Proceedings of the 6th All-Union Symposium on the Propagation of Laser Radiation in the Atmosphere, Tomsk Affiliate of the Siberian Branch of the Academy of Sciences of the USSR, Tomsk (1981), p. 71.
5. V.E. Zuev and I.E. Naats, Inverse Problems of Lidar Sensing of the Atmosphere (Springer Verlag, N.Y., 1982) [Russian original] (Nauka, Novosibirsk, 1982).
6. V.V. Veretennikov, I.E. Naats, M.V. Panchenko, and V.Ya. Fadeev, Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos, i Okeana 14, No. 12, 1313–1317 (1978).
7. В. Nilsson, Appl. Opt. 18, No. 20, 3457–3473 (1979).
8. A.N. Tikhonov and V.Ya. Arsenin, Methods for Solving Improperly Posed Problems (Nauka, Moscow, 1979).
9. V.P. Tanana, Methods for Solving Operator Equations (Nauka, Moscow, 1981).