Vol. 30, issue 07, article # 4

Dudorov V. V., Kolosov V. V. Model for joint consideration of turbulent distortions and aerosol scattering in coherent and incoherent object imaging. // Optika Atmosfery i Okeana. 2017. V. 30. No. 07. P. 567–574. DOI: 10.15372/AOO20170704 [in Russian].
Copy the reference to clipboard
Abstract:

A technique is suggested for the joint consideration of turbulent (refraction) and aerosol (scattering) distortions when imaging laser illuminated objects. The technique is based on the joint solution of the parabolic equation and the radiation transfer equation by the split-step method. Turbulent distortions are simulated with the common phase screen method. The aerosol scattering simulation is based on the division of the object–observer distance to a certain number of statistically independent scattering layers, for each of which coherent (for forward scattering) and incoherent (for forward and back scattering) components of the scattered field are formed in the single-scattering approximation. The results of simulation of coherent and incoherent images of a laser radiation illuminated object are presented.

Keywords:

incoherent image, laser illumination, atmospheric turbulence, aerosol scattering

References:

  1. Banah V.A., Razenkov I.A., Smaliho I.N. Ajerozol'nyj lidar dlja issledovanija usilenija obratnogo atmosfernogo rassejanija. I. Komp'juternoe modelirovanie // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 5–11.
  2. Banah V.A., Razenkov I.A. Ajerozol'nyj lidar dlja issledovanija usilenija obratnogo atmosfernogo rassejanija. II. Konstrukcija i jeksperiment // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 113–119.
  3. Banah V.A. Modelirovanie izobrazhenija podsvechivaemogo lazerom rasseivajushhego sloja v turbulentnoj atmosfere. // Optika atmosf. i okeana. 2007. V. 20, N 4. P. 303–307.
  4. Dudorov V.V., Vorontsov M.A., Lachinova S.L., Cunningham S. Numerical techniques for analysis of joint impact of atmospheric turbulence and aerosol scattering effects on imaging systems // Proc. SPIE. 2016. V. 9982. CID: 99820D.
  5. Rytov M.S., Kravtsov Yu.A., Tatarskii V.I. Principles of Statistical Radiophysics 4, Wave Propagation through Random Media. Berlin: Springer, 1989. 188 p.
  6. Van de Нulst Н.С. Light Scattering by Small Particles. New York: John Wiley & Sons, 1957. 496 p.
  7. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons, 1983. 530 p.
  8. Kaloshin G.A., Matvienko G.G., Shishkin S.A., Anisimov V.I., Butuzov V.V., Zhukov V.V. Dal'nost' vidimosti svetodiodnyh signal'nyh ognej vzletno-posadochnoj polosy // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 449–454; Kaloshin G.A., Matvien- ko G.G., Shishkin S.A., Anisimov V.I., Butusov V.V., Zhukov V.V. Visibility range of LED signaling lights of a runway // Atmos. Ocean. Opt. 2016. V. 29, N 6. P. 580–586.
  9. Kandidov V.P. Metod Monte-Karlo v nelinejnoj statisticheskoj optike // Uspehi fiz. nauk. 1996. V. 166. P. 1309–1338.
  10. Vorontsov M.A., Kolosov V.V. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing // J. Opt. Soc. Am. A. 2005. V. 22. P. 126–141.
  11. Marchuk G.I. Metody rasshheplenija. M.: Nauka, 1988. 263 p.
  12. Dudorov V.V., Kolosov V.V., Filimonov G.A. Algoritm formirovanija beskonechnyh turbulentnyh jekranov dlja zadachi modelirovanija dolgovremennyh lazernyh jeksperimentov v atmosfere // Izv. TPU. 2006. V. 309, N 8. P. 85–89.
  13. Dudorov V.V., Filimonov G.A., Kolosov V.V. Algorithm for formation of an infinite random turbulent screen // Proc. SPIE. 2005. V. 6160. CID:61600R.
  14. Measures R.M. Laser Remote Sensing: Fundamentals and Applications. New York: John Wiley & Sons, 1984. 521 p.
  15. Zuev V.E., Kabanov M.V. Sovremennye problemy optiki atmosfery. V. 4. Optika atmosfernogo ajerozolja. L.: Gidrometeoizdat, 1987. 256 p.
  16. Bakut P.A. Teorija kogerentnyh izobrazhenij / Pod red. N.D. Ustinova.  M.: Radio i svjaz', 1987. 263 p.
  17. Lachinova S.L., Vorontsov M.A., Dudorov V.V., Kolosov V.V., Valley M.T. Anisoplanatic imaging through atmospheric turbulence: Brightness function approach // Proc. SPIE. 2007. V. 6708. P. 67080E.
  18. Dudorov V.V., Kolosov V.V. Korrekcija nekogerentnyh izobrazhenij ob#ektov v uslovijah anizoplanatizma turbulentnosti po opornomu istochniku izluchenija razlichnoj dliny volny // Optika atmosf. i okeana 2010. V. 23, N 5. P. 392–397; Dudorov V.V., Kolosov V.V. Anisoplanatic turbulence correction in incoherent imaging by using reference sources with different wavelengths // Atmos. Ocean. Opt. 2010. V. 23, N 5. P. 353–358.
  19. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 214 p.
  20. Carrano C.J. Speckle Imaging over horizontal paths // Proc. SPIE. 2002. V. 4825. P. 109–120.
  21. Dudorov V.V., Vorontsov M.A., Kolosov V.V. Monte Carlo technique vs. brightness function approach for problem of speckle-field propagation through a turbulent medium // Proc. SPIE. 2006. V. 6522. P. 65220N.